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Preface

This book is not a systematic course of theoretical physics, it contains only
selected problems and topics of this remarkable science. One cannot but recall
here the words of I. Newton (in his “Universal Arithmetic”): “In learning the
Science, Examples are of more use than Precepts.”

The book is based on lectures on additional chapters of theoretical physics
given by me in various years at the Department of Physics, Novosibirsk Uni-
versity, Russia, and at Scuola Normale Superiore, Pisa, Italy. The main source
of interest to the problems addressed in the lectures were my own investiga-
tions, as well as discussions with colleagues and students. The contents of the
additional courses varied in time, together with my own interests, and some-
times in accordance with the wishes of the students. Some problems considered
in the book were included also into general courses.

I strived to rely both in the lectures and in the book on qualitative, intu-
itive arguments, as far as they can be sufficient at all for theoretical physics.
An exception in this sense is in the book the chapter on the semiclassical ap-
proximation in complex plane; it appears here by the following reason: in my
opinion, a comprehensible presentation of this efficient technique is practically
absent in literature. Unfortunately, in other chapters also, far from always I
could avoid calculations.

I hope that the book will be accessible and useful for a student who has
digested common courses of analytical mechanics, electrodynamics, and quan-
tum mechanics; only some sections of the last chapter require an acquaintance
with the fundamentals of quantum electrodynamics. Hopefully, even a mature
physicist will find something interesting in the book. And not only a theorist.
May be, the emphasis on a qualitative analysis of problems will make at least
a major part of the book accessible for an experimentalist as well.

There is no list of references in the book. However, in the cases where,
in my opinion, a reader may run into difficulties, references are given to the
remarkable course of theoretical physics by L. D. Landau and E. M. Lifshitz;
hopefully, these references will be useful and sufficient. In the book I indicate
also the authors of concrete results.



VI Preface

Some results presented in the book were obtained in collaboration with
A. D. Dolgov, D. V. Matvienko, E. V. Pitjeva, A. A. Pomeransky, and
G. Yu. Ruban.

Useful remarks on the subjects discussed in the book were made by
A. I. Chernykh, S. M. Kopeikin, A. A. Pomeransky, S. A. Rybak, V. G. Serbo,
V. V. Sokolov, A. I. Vainshtein, and M. I. Vysotsky.

Of exceptional importance to me was the lively interest of numerous un-
dergraduates and graduates.

I owe my deep and sincere gratitude to all of them.

Novosibirsk, Iosif Khriplovich
July 2007
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1

Classical Mechanics. Unexpected Questions

1.1 What Is the Additional Integral of Motion
for Isotropic Oscillator?

It is well-known that in the attractive Coulomb potential

U(r) = − α

r
, α > 0 , (1.1)

orbits of particles with negative energy are closed. Particle orbits are closed
also in the isotropic oscillator potential

U(r) =
1
2

mω2r2 . (1.2)

Let us note that, as has been proven long ago (J. Bertrand, 1873), there
are no other central potentials, besides the Coulomb and oscillator ones, with
motion along closed orbits 1. To be more precise, we mean closed orbits which
exist independently of the concrete values of two other, ordinary, integrals of
motion, angular momentum L and energy E. This remark is quite essential
since, for instance, for a wide class of attractive potentials U(r) closed circular
orbits certainly exist. Their radius r0 corresponds to the minimum of the
effective potential

Ueff(r) = U(r) +
L2

2 mr2

of the radial motion, and is obviously a function of L. In its turn, the energy
on such an orbit,

E = Ueff(r0) = U(r0) +
L2

2 mr2
0

,

depends on the angular momentum L, both explicitly and via r0(L).

1Unfortunately, the known proofs of this simple fact are rather tedious.
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It is well-known that the fact that orbits for particles of negative energy in
the attractive Coulomb potential are closed, is directly related to the existence
in the problem, in line with the angular momentum integral L, of one more
conserved vector

A = [v × L] − α
r
r

, (1.3)

directed along the large semiaxis of the ellipse from the Coulomb center
to the point on trajectory, which is of minimum distance from the center
(P. S. Laplace, 1829; K. Runge, 1919; W. Lenz, 1924). One can easily check
directly that vector (1.3) is an integral of motion, by differentiating it over
time.

It is natural to assume that an oscillator potential, where trajectories are
also closed, should also possess its own additional integral of motion. To find
out what this integral looks like, we recall first of all an essential difference
between closed elliptic orbits in the Coulomb and oscillator potentials.

In the first case, the Coulomb center, chosen as an origin, is in the focus of
the ellipse, so that the particle trajectory is characterized indeed by a vector.
This vector is directed from the center, for instance, to the point on the orbit
of the shortest distance to the center.

In the second case, the oscillator one, the center of potential, i.e., the point
where its value is minimum and which is chosen for the origin, is not in the
focus of an elliptic trajectory, but in its center. It can be easily seen that here
the trajectory has no singled out vector at all. In other words, if a trajectory
in the Coulomb potential has one symmetry axis passing through the origin,
in the oscillator problem there are two symmetry axes. Therefore, a particle
trajectory in the oscillator potential may be characterized by a symmetric
second-rank tensor.

One can easily check that tensor

Qmn =
m

2
vmvn +

mω2

2
rmrn , (1.4)

lying in the xy plane (z axis we direct along the orbital momentum L), is an
integral of motion indeed. After going over to main axes (of course, in the
present case they coincide with the symmetry axes of an elliptic orbit in the
oscillator potential), tensor (1.4) reduces to

Qmn =
m

2
diag (v2

x + ω2x2, v2
y + ω2y2) = diag (Ex, Ey). (1.5)

Thus, conservation of tensor Qmn results from the fact that in an isotropic
linear oscillator the energy is conserved for the motion along each of its axes
separately.

In other words, if one identifies the coordinate axes with the symmetry
axes of an elliptic orbit, the additional integral of motion in an oscillator
potential reduces in fact to a single scalar function

E− = Ex − Ey . (1.6)
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In the Coulomb field, the situation is similar in this respect. Here also,
if one directs one of the coordinate axes from the center to perihelion, the
additional integral of motion reduces in fact to a single scalar function, the
length of vector (1.3) (it can be easily seen that this length is equal to αε,
where ε is the orbit eccentricity).

We note that in both cases, Coulomb and oscillator ones, the existence
of an additional integral of motion is related directly to the presence in each
of them, in line with the spherical coordinates, of one more system where
the variables can be separated. These are the parabolic coordinates in the
Coulomb problem, and the common Cartesian coordinates in the oscillator
one.

Let us recall now that in the Coulomb field vector (1.3) is conserved also
for an infinite motion, i.e., in the case of positive energy, and even in the
repulsive Coulomb field (for α < 0). It can be easily checked, for instance, by
direct calculation of dA/dt, using equations of motion.

On the other hand, the existence of an additional conserved vector for an
infinite motion in a central field is rather obvious and far from being special for
the Coulomb problem (I. B. Khriplovich, A. A. Pomeransky, G. Yu. Ruban,
2006). Indeed, for a finite motion, the absence of precession from a turn to
turn for the vector directed from the center to the point of trajectory which
is closest to the center, is an exceptional property of the Coulomb field. But
for an infinite motion, i.e., for a single passing by the center, such a vector is
conserved trivially. However, just due to its triviality, this additional conserved
vector gives here nothing new.

1.2 May Energy of a System Be Conserved
If Its Hamiltonian Is Explicitly Time-Dependent?

To the surprise of some readers, the reply to the question asked in the title is
positive 2.

Let us consider at first the well-known problem of a charged particle in a
constant homogeneous magnetic field. The Hamiltonian of this particle is

H =
1

2m

(
p − e

c
A
)2

. (1.7)

It is well-known also that various gauges are possible for the vector potential
A. For magnetic field B directed along the z axis, one can choose for instance

A = B(0, x, 0). (1.8)

In this gauge, the Hamiltonian is independent of y and therefore the corre-
sponding component py of the canonical momentum is an integral of motion.
One can choose, however, another gauge:

2In the presentation here, we follow the note by I. B. Khriplovich, A. I. Milstein
(1999).
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A = B(−y, 0, 0). (1.9)

And then another component of the canonical momentum, px, will be con-
served.

Thus, a component of p, orthogonal to the magnetic field, has turned out
an integral of motion, and moreover, the conserved component of momentum
can be chosen at will. What does it mean?

A sufficiently obvious answer is that the canonical momentum p is not a
gauge-invariant quantity, and hence has no direct physical meaning. As to the
usual visual picture of the transverse motion in magnetic field, it is not the
canonical momentum p that precesses and changes constantly its direction,
but the velocity

v =
1
m

(
p− e

c
A
)

.

As distinct from the canonical momentum p, the velocity v is a gauge-
invariant and uniquely defined quantity.

It is quite natural that not only the space component p of canonical mo-
mentum is gauge-dependent, but its time component, the Hamiltonian H , is
gauge-dependent as well. It is the kinetic energy H − eA0 which is gauge-
invariant.

As a rather unexpected manifestation of this fact, let us consider the ex-
ample of a well-known physical system where the energy is conserved, but
the Hamiltonian may be time-dependent. We mean a charged particle in
an electric field E, for instance, in a Coulomb one. Let us choose here the
gauge A0 = 0. Obviously, in this gauge the vector potential becomes equal to
A = − c tE, so that now Hamiltonian (1.7) is explicitly time-dependent.

Nevertheless, the energy of a particle in a time-independent electromag-
netic field is certainly conserved. Indeed, here the equations of motion are

ṙ = {H, r} =
1
m

(p + e tE) , (1.10)

mr̈ =
d

dt
(p + e tE ) =

∂

∂t
(p + e tE) + {H, p + e tE} = eE (1.11)

(we use in these classical equations the Poisson brackets {..., ...}) . Since the
strength of a time-independent electric field can always be written as the
gradient of some scalar function:

E = −∇φ ,

equation (1.11) has first integral

1
2

mṙ2 + eφ = const ,

which is nothing but the energy integral.



1.3 Dark Matter, Gauss Theorem, Perihelion Precession 5

On the other hand, due to equation (1.10), Hamiltonian in the gauge
A0 = 0 coincides in fact with the kinetic energy:

H =
1

2m
(p + e tE)2 =

1
2

mṙ2. (1.12)

It should be the case since the kinetic energy H−eA0, being a gauge-invariant
quantity, should coincide with the Hamiltonian in the gauge A0 = 0.

1.3 Dark Matter in Solar System, Gauss Theorem,
and Secular Precession of Planet Perihelion

Astronomical observations indicate that in the universe, along with the com-
mon matter, there is a so-called dark matter, which interacts with the common
one only gravitationally. Moreover, the amount of the dark matter is larger
than that of the common one.

The average density of the dark matter in the universe constitutes about

ρ uni ∼ 10−29 g/cm3 ,

and its density in our galaxy is much higher:

ρ gal ∼ 10−24 g/cm3 .

As to the dark matter density in our solar system, only upper limits on it
are known. Even the best of them, discussed below, correspond to a density
much higher than the galactic one. It is natural to ascribe the possibility
of existence of such relatively high density to the gravitational field of the
Sun. This justifies, at least partially, the assumption made below, according
to which the dark matter in our solar system is a dust with density ρ(r),
spherically symmetric with respect to the Sun.

Let us find the gravitational potential Φ(r) of such a dust. It is instructive
to use to this end the Gauss theorem for the gravitational field strength, i.e.,
for the acceleration g(r) created by this field:

g(r) = − 4πk

r2

∫ r

0

dr1 r2
1 ρ(r1) ; (1.13)

here k is the Newton gravitational constant. Let us attract attention to the
sign − in this expression, which corresponds to the fact that the acceleration
is directed to the center, but not in the opposite direction, for any positively
defined density ρ. The gravitational potential is 3

3One should be warned against a possible näıve (and erroneous!) presentation
of the Gauss theorem in the form Φ(r) = −kµ(r)/r, where Φ(r) is the gravitational
potential, and µ(r) = 4π

∫ r

0
dr1 r2

1 ρ(r1) is the total mass of the matter inside the
sphere of radius r. Obviously, if µ(r) grows with radius faster than r, such potential
would result in antigravity, i.e., in the gravitational repulsion, but not attraction.
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Φ(r) = −
∫ r

dr2 g(r2) = 4πk

∫ r

dr2
1
r2
2

∫ r2

0

dr1 r2
1 ρ(r1) . (1.14)

As usual, a potential is defined up to a constant, so that the value of the lower
limit in the integral over r2 is inessential. Of course, by changing the order of
integration, this formula reduces to the common expression for the potential
created by a spherically symmetric density:

Φ(r) = −4πk

∫
dr′ρ(r′)
|r − r′| = −4πk

[
1
r

∫ r

0

dr′r′ 2ρ(r′) +
∫ ∞

r

dr′r′ρ(r′)
]

.

The corresponding correction to the potential energy of a planet with mass
m is δU(r) = m Φ(r). This correction shifts the perihelion of a planet orbit
by the angle 4

δφ =
d

dL

2m

L

∫ π

0

dφ r2 δU(r) (1.15)

per period. It is convenient to go over in this expression from the orbital
angular momentum L to the so-called orbit parameter p ; they are related as
follows:

p =
L2

k m2M
; (1.16)

here and below M is the mass of the Sun. Besides, we express r via p and the
orbit eccentricity e:

r =
p

1 + e cosφ
. (1.17)

Then, the relative perihelion shift per period is written as

δφ

2π
=

1
kmM

(
− 1

p
+ 2

d

dp

)∫ π

0

dφ

π
R

(
p

1 + e cosφ

)
, (1.18)

where R(r) = r2 δU(r) .
We note that for the planets of interest to us the eccentricities are small:

for Mercury, Earth, and Mars they are 0.21, 0.02, and 0.09, respectively. We
use this circumstance, and expand the integrand in e, up to second order
included. Then, integration over φ results in

δφ

2π
=

1
kmM

(
− 1

p
+ 2

d

dp

){
R(p) +

1
2

e2

[
p R′(p) +

1
2

p2R′′(p)
]}

. (1.19)

Now we put e2 = 1−2p|E|/(kmM) equal to zero, with the account for relation

de2

dp
= − 2|E|

(kmM)
−→ − 1

r0
,

where r0 is the radius of a circular orbit. From now on we omit the subscript
0 at this radius, and arrive at expression

4See: L. D. Landau and E. M. Lifshitz, Mechanics. §15 (in particular, Problem 3).
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δφ

2π
=

1
kmM

[
− 1

r
R(r) + R′(r) − 1

2
r2R′′(r)

]
. (1.20)

Coming back in it from R(r) to r2 δU(r), we arrive finally at a simple result:

δφ

2π
= − 2π

M
ρ(r) r3 . (1.21)

One can arrive at this result otherwise, by calculating the following cor-
rections caused by the perturbation δU(r): δωφ to the rotation frequency and
δωr to the frequency of small radial oscillations with respect to the circular
orbit. The difference of these corrections, multiplied by the unperturbed ro-
tation period, is equal to the perihelion shift per period. The corresponding
calculation is no less tedious than that given above. The advantage of the
derivation presented in detail here is that, if necessary, it allows one to in-
clude in elementary way corrections due to the finite eccentricity. However, it
is clear from the above solution that these corrections start at second order
in e. Therefore, even for Mercury, with the largest eccentricity, 0.21, these
corrections are inessential for the problem under discussion.

Coming back to formula (1.21), we wish to emphasize that, according to
it, the perihelion shift is governed directly by a local property of dark matter,
i.e., by its density ρ(r) on the trajectory of a planet. Therefore, the analysis
of observational data for the secular perihelion precession of various planets
results in direct, model-independent upper limits on the local density of dark
matter at various distances from the Sun, corresponding to the orbit radii.

In Table 1.1 we present these limits (I. B. Khriplovich, E. V. Pitjeva,

Table 1.1

Mercury Earth Mars

excessive
perihelion shift,
10−4 s/century − 0.67± 0.93 − 0.15± 0.31 0.14± 0.73

orbit radius r,
a.u. 0.39 1.00 1.52

dark matter
density, 110±150 1.4±3.0 − 0.4±2.0

10−19 g/cm3 < 260 < 4.4 < 1.6
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2006), following from the analysis of the perihelion precession of Mercury,
Earth, and Mars. In the table, the excessive perihelion shift means a possible
correction to the secular perihelion precession, i.e., deviation of the most accu-
rate calculations (E. V. Pitjeva, 2005) from observational data; just for the
planets considered here these deviations are minimal. Then, the average orbit
radii for these planets are indicated in astronomic units; 1 a.u. = 150×106 km.
The upper limits on the dark matter density in the last line of the table are
derived in an obvious näıve way from the numbers in the previous line.

1.4 What Is Classical Analogue of Schrödinger
Variational Principle?

1.4.1 General Discussion

Let us recall the formulation of the Schrödinger variational principle in quan-
tum mechanics. For the sake of simplicity, we confine ourselves here to the
one-dimensional bound-state problem. The wave function ψ(x) of a system
with Hamiltonian H is found by the variational method as a minimum of the
functional ∫

dxψ(x)Hψ(x) , (1.22)

at the subsidiary normalization condition∫
dxψ2(x) = 1 (1.23)

(it is well-known that one can choose here real wave functions). Obviously, the
success of the procedure depends essentially on judicious choice of the trial
function ψ(x). In particular, the ground state wave function ψ0(x) should not
have nodes. Indeed, just this condition guarantees the minimum value of the
mean kinetic energy

− �
2

2m

∫
dxψ0(x)∆ψ0(x) =

�
2

2m

∫
dx

(
dψ0(x)

dx

)2

.

After ψ0(x) has been found, the wave function ψ1(x) of the first excited
state is obtained also as a minimum value of functional (1.22) with the nor-
malization condition (1.23). However, ψ1(x) should be orthogonal to ψ0(x),
i.e., it should satisfy one more subsidiary condition∫

dxψ0(x)ψ1(x) = 0 . (1.24)

In its turn, wave function ψ1(x) should also have the minimum possible num-
ber of nodes. Since ψ1(x) is orthogonal to the ground state function ψ0(x) of
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definite sign, then (again to minimize the kinetic energy) the wave function
ψ1(x) of the first excited state should have one node.

Analogously, the wave function ψ2(x) of the second excited state should
be orthogonal both to ψ0(x) and ψ1(x). Correspondingly, it has two nodes.

Sufficiently evident general rule is as follows: the wave function ψn(x) of
the nth excited state has n nodes. In other words, the Schrödinger variational
principle in quantum mechanics can be formulated for the nth state as the
requirement of minimum average energy at the fixed number n of the nodes.

Let us recall now the semiclassical Bohr–Sommerfeld quantization rule∫ b

a

p dq = π�

(
n +

1
2

)
. (1.25)

Then it becomes clear that in the classical limit of large n, the Schrödinger
variational principle is formulated as the requirement of minimum average
energy Ē at the fixed truncated action

W =
∫ b

a

p dq ,

i.e.,
δĒ |W = 0 . (1.26)

On the other hand, in classical mechanics there is the Maupertuis principle,
which is formulated as follows. Let us write the action for the trajectories
where the energy E is conserved in the form

S =
∫ b

a

p dq − Et = W − Et . (1.27)

The Maupertuis principle consists in the requirement of minimum truncated
action W at fixed energy E,

δW |E= 0 . (1.28)

Of course, at the considered trajectories the mean energy Ē coincides with E,
so that the classical analogue (1.26) of the Schrödinger variational principle is
in fact reciprocal one with respect to the Maupertuis principle (1.28) (C. Grey,
G. Karl, V.A. Novikov, 1996). Certainly, variational principle (1.26) applies
not only to a finite motion, but to infinite motion as well.

1.4.2 Example. Anharmonic Oscillator

As an example of the efficient application of variational principle (1.26), we
consider the classical problem of the anharmonic oscillator with Hamiltonian

H =
p2

2m
+

1
2

mω2
0x

2 +
1
4

βmx4. (1.29)
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As well as in quantum mechanics, the success of the direct variational
approach to a classical problem depends essentially on the judicious choice of
the trial function.

In spite of the presence of nonlinear term in Hamiltonian (1.29), the par-
ticle motion remains periodic. Therefore, we should choose the trial solution
in a periodic form as well. Let us write it as

x(t) = a sin ωt. (1.30)

Then the truncated action and mean energy are, correspondingly,

W =
∫ T

0

p dx =
∫ T

0

dtmẋ2 = ma2ω
1
2

∫ 2π

0

dφ = πma2ω = const , (1.31)

and

Ē =
1
T

∫ T

0

dt

[
1
2

(
p2

m
+ mω2

0x
2

)
+

1
4

mβx4

]

=
ma2

4

[
ω2 + ω2

0 +
3
8

βa2

]
=

W

4π

[
ω +

ω2
0

ω
+

3
8

βW

πmω2

]
; (1.32)

here T = 2π/ω.
It can be easily seen that, with a constant W , the minimum of Ē in ω is

reached for
ω2 = ω2

0 +
3
4

βW

πmω
. (1.33)

With formulas (1.31) and (1.33) one can in principle express both the fre-
quency ω and amplitude a of a nonlinear oscillation via the parameters of
Hamiltonian (1.29) and the fixed value of truncated action W . Thus, these
formulas give in an implicit form the complete variational solution of the
formulated problem.

Let us rewrite relation (1.33) somewhat otherwise:

ω2 = ω2
0 +

3
4

βa2. (1.34)

It becomes obvious now that the frequency of nonlinear oscillations depends on
their amplitude, as distinct from the linear case. We note also that in the limit
of weak nonlinearity, relation (1.34) reproduces the well-known perturbative
result for the frequency shift of a nonlinear oscillator:

ω = ω0 +
3
8

βa2

ω0
. (1.35)
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Wave Phenomena and Classical
Electrodynamics Without Calculations

2.1 Uncertainty Relation, Diffraction,
and Narrow Waveguides

Let us consider the well-known problem of diffraction of an initially plane
wave with wave vector k on a round hole of radius a in a thin screen. If the
radius of the hole is sufficiently large, so that ka � 1, then the wave remains
essentially plane after going through the hole, with a small distortion due to
a diffraction on the edges of the hole. Now we start diminishing a. The wave
gets more and more distorted after going through the hole. Indeed, the allowed
transverse component of the wave vector in it increases in accordance with
the uncertainty relation ∆kta >∼1. At last, with a ∼ 1/k (or a ∼ λ, where λ is
the wavelength) the outgoing wave becomes spherical, since in this case the
transverse component of the wave vector in it kt >∼ 1/a reaches its maximum
allowed value k.

However, let us decrease further the size of the hole. Obviously, on the
one hand, kt cannot exceed k, but on the other hand, one cannot violate the
uncertainty relation. So, what will happen?

The first answer is that with too small a hole the wave just will not pen-
etrate it. This is true by itself in the sense that for a � λ the amplitude of
the outgoing wave will be exponentially small. In principle, however, one can
make, first, the intensity of the incoming wave arbitrarily large, and second,
the detector behind the screen arbitrarily sensitive. Hence, this answer does
not solve the problem.

The solution looks otherwise. The uncertainty relation dictates indeed that
for the wave with wave vector k the size of its source should not be less than
λ ∼ 1/k. When applied to our problem, it means that the source of the
outgoing wave is in fact not the hole of radius a by itself, but a spot on the
external side of the screen with a characteristic size ∼ λ � a. The quantitative
solution of the problem of wave diffraction on a small hole is too complicated
to be considered here. However, the pointed out qualitative answer is clear
and dictated just by the uncertainty relation.
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And now we somewhat modify the problem. Instead of a thin screen with a
round hole, let us consider a screen of a finite thickness with a round channel.
We assume that the walls of the channel are absolutely reflecting, and its
radius a is small, i.e., again ka � 1. In other words, we consider the passage
of a wave through a narrow waveguide. In such a channel (or wave guide), the
wave certainly cannot spread in the transverse direction. Then, how can one
reconcile condition ka � 1 with the uncertainty relation kta >∼1?

The answer is as follows. The components of the wave vector, longitudinal
kl and transverse kt, are related by the obvious relation

k2
l + k2

t = k2.

Therefore, the fact that in our narrow wave guide k2
t � k2 means that in

it k2
l < 0. In other words, in such a wave guide the longitudinal component

kl of wave vector is purely imaginary. And this corresponds of course to the
well-known fact: a wave in a narrow wave guide is damped exponentially.

2.2 Pseudoscalar Invariant of Electromagnetic Field.
Particle with Magnetic and Electric Dipole Moments

It is well-known that an electromagnetic field is characterized by two quadratic
invariants

I1 = FµνFµν = 4(B2 − E2), I2 =
1
2

εαβµνFαβFµν = 4EB ;

here Fµν = ∂µAν − ∂νAµ is the tensor of field strength, Aµ is its vector
potential, Greek indices run the values 0, 1, 2, 3. The electric field strength E
is a common polar vector, besides it does not change sign under time reversal.
The magnetic field strength B is an axial vector, and changes sign under time
reversal. Correspondingly, I1 is a true scalar, and I2 is a pseudoscalar changing
sign under time reversal.

It can be easily seen that the pseudoscalar I2 is in the general case a total
divergence:

I2 = ∂α(εαβµνAβFµν) .

In particular, for static fields I2 reduces to the divergence of a three-
dimensional vector:

I2 = 4EB −→ − 4B∇A0 = − 4 ∇(A0B) . (2.1)

Therefore, if static fields decrease sufficiently fast at infinity, the integral of
I2 over the whole space vanishes.

Let us consider now a particle which possesses simultaneously both mag-
netic µ and electric d dipole moments, parallel (or antiparallel) to each other.

For instance, it can be the neutron, a particle with spin s = 1/2, possessing
a magnetic moment. Neutron is a nongenerate quantum-mechanical system,
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d m

Fig. 2.1

characterized by a single vector, its spin s. Therefore, the neutron magnetic
moment µ should be directed parallel or antiparallel to its spin (in the neutron
they are in fact antiparallel). We note that both µ and s are axial vectors.
Besides, they both change sign under the time reversal. There are good rea-
sons to believe that the neutron may possess also an electric dipole moment
(EDM) d. By the exactly same reason, the absence of degeneracy, d should
be directed parallel or antiparallel to the spin s. However, as distinct from the
spin and magnetic moment, the EDM d is a polar vector, and besides, it does
not change sign under time reversal. Therefore, the statement that d and s
are parallel (or antiparallel), changes to the opposite one both under the re-
flection of space coordinates and under the time reversal, i.e., this statement
is not invariant with respect to both these operations. Thus, the existence of
electric dipole moments of the neutron (as well as other elementary particles)
is forbidden by the laws of conservation of space and time parity. However,
just by this reason, the searches for the dipole moments are of great interest
for elementary particle physics. Still, the problems of violation of space and
time parity are not directly related to the subject of the present section. We
come back therefore to our problem.

Let us, for definiteness sake, assume that µ and d are parallel. Then, it
seems that magnetic and electric lines of strength are also parallel everywhere.
In this case the invariant I2 is positively definite, so that the integral of it over
the whole space cannot turn to zero. How is this paradox resolved 1 ?

Let us consider the picture of lines of strength in more details, taking into
account the finite size of the dipoles themselves. From inspecting Fig. 2.1 it be-
comes clear that if d and µ are parallel, and correspondingly, the electric and
magnetic lines of strength are parallel in the outer region, then the same lines
of strength are antiparallel inside the dipoles. The contributions of the outer

1Curiously, its resolution, at least in the classical version of the problem, does
not create usually great difficulties for qualified experimentalists. On the other hand,
this question sometimes turns out very difficult for quite well-known theorists.
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and inner regions to the discussed integral cancel, in complete correspondence
with the made assertion.

Let us address now the quantum version of the problem, where both
dipoles, µ and d, are considered as point-like. Here some refinement of widely
used formulas will be necessary.

We start with expression ∇i∇j(1/r). It can be easily seen that the näıve
(and commonly used) relation

∇i∇j
1
r

=
3rirj − δijr

2

r5

is generally speaking wrong. Indeed, it is sufficient to calculate its trace and
recall that ∆(1/r) = − 4πδ(r). Obviously, the correct equation is as follows:

∇i∇j
1
r

=
3rirj − δijr

2

r5
− 4π

3
δij δ(r) . (2.2)

Let us find the magnetic field created by a point-like magnetic dipole
moment µ. It is well-known that the corresponding vector potential equals

A = µ × r
r3

= ∇1
r
× µ . (2.3)

And the magnetic field of this dipole is 2

B = ∇ × A =
3n(nµ) − µ

r3
+

8π

3
µ δ(r) , n =

r
r

. (2.4)

Now we consider the electric dipole moment d. Its electric field is

E = (d∇)∇1
r

=
3n(nd) − d

r3
− 4π

3
d δ(r) . (2.5)

Let us compare now expressions (2.4) and (2.5). For parallel d and µ,
the common, long-range (i.e., without δ-functions) contributions in these field
strengths are also parallel. As to the local, δ-function contributions, they are
antiparallel for parallel d and µ. The correspondence is obvious with the
structure of the lines of field strength of classical dipoles (see Fig. 3.1).

2.3 Synchrotron Radiation of Ultrarelativistic Particles
Without Special Functions

The synchrotron radiation, i.e., the radiation of a charged particle in an ex-
ternal magnetic field, is considered in various textbooks 3. However, the con-
sideration therein is based usually on the rather tedious exact solution of the

2Let us note that just the δ-function term in this expression is responsible for
the hyperfine splitting of s-levels in atoms and ions caused by the nuclear magnetic
moment.

3See, for instance: L.D. Landau and E.M. Lifshitz, The Classical Theory of
Fields . §74.
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problem. Meanwhile, the qualitative investigation, presented below, allows one
to obtain in an intuitive way all principal characteristics of the synchrotron
radiation of ultrarelativistic particles: its total intensity, angular and spectral
distributions.

Let us start with the total radiation intensity. In the locally inertial frame
(LIF), comoving with an electron, it is

I ′ ∼ e2(a′)2 ∼ e4

m2
(E′)2. (2.6)

Here e and m are the electron charge and mass, a is its acceleration, E is
the electric field strength; I, a, and E are supplied with primes to point out
that they refer to the LIF. E′ is obtained from the magnetic field B in the
laboratory frame (LF) by the Lorentz transformation

E′ ∼ Bγ, γ =
1√

1 − v2
. (2.7)

We recall now that I is an invariant. Indeed, the radiation intensity is
expressed through the probability of the photon emission W and its energy
�ω as follows: I = W�ω. Then, the probability W in the LF is related to the
probability in the LIF W ′ by the relation W = W ′/γ (just recall that the
lifetime of an unstable particle in LF is γ times larger than that in LIF). On
the other hand, it is well-known that ω = ω′γ. Finally, I ′ = I.

Now, substituting into (2.6) expression (2.7) for the electric field E′ in the
LIF, we obtain the well-known result for the total intensity of radiation

I ∼ e4

m2
B2γ2. (2.8)

If instead of B one fixes the radius of the electron trajectory r0, related to B
via eB ∼ mγ/r0, the expression for the total intensity becomes

I ∼ e2γ4

r2
0

. (2.9)

Let us go over now to the angular distribution of the radiation. In the
LIF it has a common dipole form, it is just trigonometry. In other words, in
the LIF θ′ = k′

t/k′
l ∼ 1. Here k′

t(l) is the transverse (longitudinal) component
of the wave vector of the photon. In the LF these components are: kt = k′

t,
kl = k′

lγ. Therefore, in the LF an ultrarelativistic electron radiates into a cone
with a typical angle

θc ∼ kt/kl ∼ γ−1. (2.10)

An observer receives the signal only staying inside this cone which moves
together with the electron. An elementary consideration demonstrates that
the electron beams at the observer only from the piece of the trajectory arc
that has the same angular size as the cone itself. In the present case it means
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that the angular size of this piece of the arc is θc ∼ γ−1. In other words, the
formation length for radiation, which in our ultrarelativistic case (v ≈ c = 1)
coincides with the formation time for it, is

∆t ∼ r0θc ∼ r0γ
−1.

Then the duration of signal receiving, with the account for the longitudinal
Doppler effect, is

δt = (1 − nv)∆t ≈ 1
2

(θ2 + γ−2)∆t , (2.11)

where n = k/k. For θ ∼ θc ∼ γ−1 we obtain δtc ∼ r0γ
−3. It means that the

characteristic frequency of the received radiation is γ3 times larger than the
rotation frequency ω0:

ωc ∼ δt−1
c ∼ γ3r−1

0 ∼ γ3ω0 . (2.12)

We turn now to the spectral distribution of the synchrotron radiation.
Its intensity decreases rapidly for ω � ωc. Let us assume that for ω<∼ωc it
changes according to a power law: I(ω) ∼ ων . Then, by comparing the total
intensity given by the integral∫ ωc

dωI(ω) ∼ ων+1
c ∼ γ3(ν+1)

with formula (2.9), we obtain ν = 1/3. In other words,

I(ω) ∼ ω1/3 for ω<∼ωc , (2.13)

or for the discrete spectrum

In ∼ n1/3 for n<∼γ3. (2.14)

And at last, let us find the angular distribution of radiation for the fre-
quency range

ω0 � ω � ωc , 1 � n � γ3.

It is natural to expect that here the characteristic angles θ are larger than
γ−1. As previously, while the angle of the radiation cone is small, θ � 1, the
electron beams at the observer only from the piece of the trajectory arc which
has the same angular size θ. But then, instead of relation (2.11), we obtain

δt ∼ ω−1 ∼ θ2∆t ∼ θ3r0 ∼ θ3ω−1
0 .

Thus, in this frequency region

θ ∼
(ω0

ω

)1/3

∼ n−1/3. (2.15)

In the conclusion of this section, it should be emphasized that the obtained
qualitative results are not special for the considered problem of finite motion
of an ultrarelativistic particle in a magnetic field. They are applicable as well
to a more general case, that of scattering in external electromagnetic fields if
characteristic scattering angles exceed γ−1.
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2.4 How Does Front of Electromagnetic Wave Propagate
in Medium?

We discuss in this section the propagation of a wave packet in a medium
with frequency-dependent refraction index n(ω). Of course, the maximum
of a wave packet propagates with the group velocity. However, we will be
interested here in the velocity of wave front propagation. It is convenient to
start the discussion of this question from another problem, so much the more
that the problem is of independent interest 4.

2.4.1 Causality and Analyticity

Let us consider a system (for instance, a tuning fork) which transforms a
received time-dependent signal f(t) (a packet of sound waves), into a response
g(t) (sound of the tuning fork itself). Let also the response be related to the
signal in a linear way:

g(t) =
∫

dt′L(t, t′)f(t′) . (2.16)

If the tuning fork properties are independent of time, then the response func-
tion L depends on the difference t − t′ only, so that

g(t) =
∫

dt′L(t − t′)f(t′) . (2.17)

Let the signal be of the form f(t) = δ(t). Then at the exit we obtain

g(t) = L(t) .

Of course, the tuning fork cannot start vibrating before the moment t = 0,
this is in fact required by causality. Therefore, it follows from the causality
condition that

L(t) = 0 for t < 0 .

This evident condition results in quite nontrivial consequences for analytic
properties of the Fourier transform L(ω) of the response function in the com-
plex plane ω. Indeed, the integral defining this Fourier transform,

L(ω) =
∫ ∞

−∞
dt eiωt L(t) =

∫ ∞

0

dt eiωt L(t) , (2.18)

for any reasonable behavior of L(t) at t → ∞, converges everywhere in the
upper half-plane ω, i.e., it has no singularities therein. In other words, the
function L(ω) is analytic in the upper half-plane.

4In the discussion of this problem we essentially follow R. Hagedorn (1966).
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C1
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C2

ω

C2

ω

a b

Fig. 2.2

From the analyticity in the upper half-plane of a response function, an
important relation follows for its real and imaginary parts. Let a point ω be
in the upper half-plane slightly above the real axis (see Fig. 2.2, a). We write
the Cauchy formula for the function L(ω),

L(ω) =
1

2πi

∫
Ca

dω′L(ω′)
ω′ − ω

+
1

2πi

∫
Cb

dω′L(ω′)
ω′ − ω

, (2.19)

choosing the contours C1 and C2 as indicated in Fig. 2.2, a. Of course, the
integral over the contour C2 vanishes, it is included in formula (2.19) only for
convenience. We neglect now the contributions from the integration over the
semicircles of a large radius, which decrease exponentially with this radius,
and put the lower horizontal line slightly below the real axis (see Fig. 2.2, b).
As a result, we arrive at the so-called dispersion relation:

L(ω) =
1
πi

P

∫ ∞

−∞

dω′L(ω′)
ω′ − ω

, (2.20)

where the integral is taken just along the real axis, and the symbol P means,
as usual, the principal value of integral. In particular, the real part of this
relation looks as follows:

ReL(ω) =
1
π

P

∫ ∞

−∞

dω′ ImL(ω′)
ω′ − ω

. (2.21)

Let us demonstrate the application of dispersion relation (2.21) with the
following example, formulated for the sake of definiteness in the language of
quantum mechanics (though it refers, in essence, to a much wider class of
problems). Let a wave be scattered off some potential. The scattering ampli-
tude is nothing but the function of response by a potential to an incoming
wave, and satisfies the same relation (2.21). In the nonrelativistic scattering
problem, the particle energy E plays the part of the wave frequency ω. It is
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known that, according to the optical theorem, the imaginary part of the for-
ward scattering amplitude A(E) is related to the total scattering cross-section
as follows:

ImA(E) =
k

4π
σ(E) ,

where k is the wave vector of particles. Thus, if the total cross-section σ(E) is
known (obviously, it is distinct from zero only for E > 0), one can by means
of the dispersion relation

ReA(E) =
1
π

P

∫ ∞

0

dE′ ImA(E′)
E′ − E

(2.22)

reconstruct ReA(E). Let us note here that if there are bound states in the
problem discussed, then relation (2.22) contains also a sum of contributions
from the poles lying at the negative energies of these states.

Now we come back to the problem with the tuning fork. Its vibrations
under an external force f(t) are described by the usual oscillator equation

ẍ + γẋ + ω2
0x = f(t) , (2.23)

where ω0 is the free oscillation frequency of the tuning fork, and γ > 0 is
its damping constant. We apply to this equation the Fourier transformation
(inverse with respect to (2.18)), and find

x(ω) =
1

ω2
0 − ω2 − iωγ

f(ω) . (2.24)

Thus, the response function of a tuning fork (oscillator with friction) is

L(ω) =
1

ω2
0 − ω2 − iωγ

. (2.25)

Its two poles,

ω± = − iγ

2
±
√

ω2
0 −

γ2

4
= − iγ

2
± ω1 ,

lie, indeed, in the lower half-plane ω (both for ω0 > γ/2, and for ω0 < γ/2).
Let us come back now to L(t):

L(t) =
1
2π

∫ ∞

−∞
dωe−iωtL(ω) . (2.26)

For t > 0 the integrand grows exponentially in the upper half-plane, for
Im ω > 0, and decreases exponentially in the lower one, for Imω < 0. Clos-
ing the integration contour below, where Imω → −∞, we get as a result the
contribution of two poles at ω = ω±, which equals

L(t) =
1
ω1

e−γt/2 sin ω1t . (2.27)
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On the other hand, for t < 0 we close the contour above, at Im ω → +∞, and
arrive at the vanishing result. Thus, the total response function is written as
follows:

L(t) =
1
ω1

e−γt/2 sin ω1t θ(t) , (2.28)

where θ(t) is the step function, equal to 0 for t < 0, and to 1 for t > 0.
Obviously, this is nothing but the Green function of equation (2.23).

One should emphasize how important for our conclusions is the condition
γ > 0. It guarantees the stability of a tuning fork with respect to random small
perturbations: oscillations caused by them die away. But for γ < 0 the system
would be unstable: any small random perturbation would grow exponentially,
a tuning fork would sound in fact by itself, without any regular influence f(t).

2.4.2 Velocity of Wave Front

Let us consider now a wave packet

A(x, t) =
1
2π

∫ ∞

−∞
dωe−iω[t−n(ω)x]a(ω) , (2.29)

propagating in a medium with the refraction index n(ω) (we put the velocity
of light equal to unity). This refraction index is expressed as follows via the
density of atoms N , the electron charge e and mass m, the so-called oscillator
strength fν0 of the transition from the atomic ground state into the excited
one ν, the frequency ων0 = (Eν − E0)/� of this transition, and the width γν

of the excited state:

n(ω) = 1 +
2πNe2

m

∑
ν

fν0

ω2
ν0 − ω2 − iων0γν

. (2.30)

The resemblance to simple expression (2.24) is quite natural: now the atoms
of matter play the part of oscillators, and n(ω) − 1 is nothing but the re-
sponse of medium to the incoming electromagnetic wave. As natural is the
analyticity of function n(ω) in the upper half-plane.

As to the Fourier transform a(ω) of a wave, its properties by themselves
are the same for a wave propagating both in a medium and in vacuum. Let
us consider therefore a wave in the empty space, i.e., at n(ω) = 1. We assume
that at least in vacuum the discussed wave packet has a sharp front. Let at
t = 0 the front be at the point x = 0. Then, obviously, the field of free wave
packet

Afree(x, t) =
1
2π

∫ ∞

−∞
dωe−iω(t−x)a(ω) (2.31)

should vanish for x > t. Of course, this condition is satisfied if a(ω) is analytic
in the upper half-plane. Otherwise it would be violated: when closing the
integration contour above, at Imω → +∞, we would obtain contributions
from the singularities of the function a(ω).
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Let us come back now to formula (2.29) for a wave packet in medium.
Under the condition t − xn(∞) < 0, the integration contour can be closed
without any problems in the upper half-plane where the integrand decreases
exponentially. Therefore, if neither n(ω) nor a(ω) have singularities in the
upper half-plane, A(x, t) turns to zero for x/t > 1/n(∞). It means that in
a medium with the refraction index n(ω), a wave front propagates with the
velocity (M. A. Leontovich, 1937) 5

vf =
1

n(∞)
. (2.32)

Thus, in optics, where n(∞) = 1 (see formula (2.30)), the wave front prop-
agates with the velocity of light. This fact is well-known by experimentalists:
the first signal, so-called precursor, reaches a detector earlier than the bulk of
a wave packet, the center of which moves with the group velocity.

In fact, there is nothing surprising about it. The wave packet with a sharp
front contains high frequencies. And for them the refraction index (2.30) tends
to unity. Just these high-frequency components form the precursor.

5The presentation here follows a paper by A. D. Dolgov, I. B. Khriplovich (1981).
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3.1 Semiclassical Hydrogen Atom

3.1.1 Are Circular Orbits Semiclassical?

Let us consider an electron state in a hydrogen atom characterized by quantum
numbers n � 1 and l = n − 1, which corresponds, as it is known, to circular
orbits. Is the radial wave function Rn,n−1(r) of this state semiclassical? At
first sight, no. Indeed, the radial quantum number nr = n − l − 1 is in this
case in no way large, but is equal to zero, so that the wave function Rn,n−1(r)
has no nodes at all.

However, let us look at the problem more attentively. Compare to this end
the radial distance at which the probability density

r2R2
n,n−1(r) ∝ r2ne−2r/n (3.1)

is maximal, with the width of this maximum (here we put the Bohr radius
equal to unity, and omit the normalization factor, inessential in the present
case). The density (3.1) is maximal at r0 = n2. To estimate its width, we
rewrite expression (3.1) in the exponential form, and expand the exponent
into series near the maximum up to second order included:

r2R2
n,n−1(r) ∝ exp(−2r/n + 2n ln r) ≈

≈ exp[−2n + 4n lnn − (r − r0)2/n] . (3.2)

It is clear from expression (3.2) that the width of the probability distribution
in ∆r = | r − r0| equals

√
n, and thus is small as compared with the position

r0 = n2 of the maximum.
Therefore, from this point of view, which is the most natural one, the

discussed state is certainly semiclassical. In other words, for a state to be
semiclassical, it is not required at all that its radial quantum number nr is
large. Of course, in line with the state where n � 1, l = n − 1, and nr = 0,
all the states with n � 1, l � 1 are semiclassical as well.
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3.1.2 Approximate Selection Rule for Electromagnetic Transitions

It is well-known that in the dipole transitions dominating in atoms, the se-
lection rule for the orbital angular momentum is ∆l = ±1. Meanwhile, the
classical radiation is always accompanied by the loss of angular momentum.
Thus, at least in the semiclassical limit the probability of dipole transitions
with ∆l = −1 is higher. Here we discuss the question how strongly and under
what conditions the transitions with ∆l = −1 are dominating in atoms. Our
approach to the problem is based on classical electrodynamics and, of course,
on the correspondence principle 1. The obtained results describe not only the
semiclassical situation. In a remarkable way, they agree, at least qualitatively,
with exact relations which refer to absolutely nonclassical transitions with
|∆n| ∼ n ∼ 1 and l ∼ 1 2. (To simplify the presentation, we mean always,
here and below, the radiation of a photon, i.e., transitions with ∆n < 0.
Obviously, in the case of photon absorption, i.e., for ∆n > 0, the angular
momentum predominantly increases.)

We start our analysis with a purely classical problem. Let a classical par-
ticle with mass m and charge e move in an attractive Coulomb field along an
ellipse with large semi-axis a and eccentricity ε. As is known 3, the radiation
intensity at a given harmonic ν is here

Iν =
4e2ω4

0ν
4a2

3c3

(
ξ2
ν + η2

ν

)
; (3.3)

ξν =
1
ν

J ′
ν(νε) , ην =

√
1 − ε2

νε
Jν(νε) ; ν > 0 . (3.4)

In expressions (3.4) Jν(νε) is the Bessel function, and J ′
ν(νε) is its derivative.

We note that since 0 ≤ ε ≤ 1, both Jν(νε) and J ′
ν(νε) are reasonably well

approximated by the first term of their series expansion in the argument. Then
it becomes clear that all the Fourier components ξν and ην are positive.

It is convenient to use the Fourier transformation in the following form:

x(t) = a

∞∑
ν=−∞

ξν eiνω0t = 2a

∞∑
ν=0

ξν cos νω0t,

y(t) = − i a
∞∑

ν=−∞
ην eiνω0t = 2a

∞∑
ν=0

ην sin νω0t .

1We follow in this section the work by I.B. Khriplovich, D.V. Matvienko (2007).
2The analysis of numerical values of transition probabilities (H. Bethe,

E. Salpeter, 1957) has demonstrated that even for n and l comparable with unity, i.e.,
in a nonclassical situation, radiation with ∆l = −1 is considerably more probable
than radiation with ∆l = 1.

3See: L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields . §70.
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Since x(t), y(t) are real, all dimensionless Fourier components ξν and ην are
real as well, and ξ−ν = ξν , η−ν = −ην . We note that the Cartesian coordi-
nates x and y are related here to the polar coordinates r and φ as follows:
x = r cosφ, y = r sin φ, where φ increases with time. Thus, the angular
momentum is directed along the z axis (but not in the opposite direction).

In the quantum problem, where ν = |∆n|, the probability of transition in
unit time is

Wν =
Iν

�ω0ν
=

4e2ω3
0ν

3a2

3c3�

(
ξ2
ν + η2

ν

)
, ω0 =

me4

�2n3
. (3.5)

Now, the loss of angular momentum with radiation is 4

Ṁ =
2e2

3c3
r × r

...
.

Going over here to the Fourier components, we obtain

Ṁν = − 4e2ω2
0ν

2

3c3
rν × ṙν ,

or (with our choice of the direction of coordinate axes, and with the angular
momentum measured in the units of �)

Ṁν = − 4e2ω3
0ν

3a2

3c3�
2ξνην . (3.6)

Obviously, the last expression is nothing but the difference between the
probabilities of transitions in the unit time with ∆l = 1 and ∆l = −1:

Ṁν = W+
ν − W−

ν . (3.7)

Of course, the total probability (3.5) can be written as

Wν = W+
ν + W−

ν . (3.8)

From explicit expressions (3.5) and (3.6) it is clear that inequality W+
ν � W−

ν

holds if 2ξνην ≈ ξ2
ν + η2

ν , or ην ≈ ξν . The last relation is valid for ε � 1,
i.e., for orbits close to circular ones. (The simplest way to check it, is to
use in formulas (3.4) the explicit expression for the Bessel function at small
argument: Jν(νε) = (νε)ν/(2νν !).)

This conclusion looks quite natural from the quantum point of view. In-
deed, it is the state with the orbital quantum number l equal to n − 1 (i.e.,
with the maximum possible value for given n) which corresponds to the circu-
lar orbit. As a result of radiation n decreases, and therefore l should decrease
as well.

4See: L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields . §75.
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The surprising fact is, however, that the probabilities W−
ν of transitions

with ∆l = −1, in fact, dominate numerically everywhere, except for a small
vicinity of the maximum possible eccentricity ε = 1. For instance, if ε  0.9
(which is much closer to 1 than to 0 !), then at ν = 1 the discussed probability
ratio is very large, it constitutes

W−
ν

W+
ν

 12 .

The dependence on ε of the ratio of W+
ν to W−

ν for two different values of ν
is presented in Fig. 3.1. With increase of ν, the region where W−

ν and W+
ν are

comparable gets more and more narrow, i.e., the corresponding curves tend
more and more to the right angle. For ν>∼1 it follows from direct numerical
calculations.

For ν � 1 it can be demonstrated analytically. To this end we present the
discussed ratio as follows:

W+
ν

W−
ν

=
(

1 − ην/ξν

1 + ην/ξν

)2

.

In the situation of interest to us, where ν � 1 and 1− ε � 1, the asymptotic
relation holds:

Jν(νε) =
1√
π

(
2
ν

)1/3

Φ

[(ν

2

)2/3

(1 − ε2)
]

, (3.9)
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where Φ is the Airy function 5. The ratio −ην/ξν is here

− ην

ξν
= x1/2 Φ(x)

Φ′(x)
, x =

(ν

2

)2/3

(1 − ε2) . (3.10)

For x  1 ratio (3.10) can be estimated (with Φ(0) = 0.629, Φ′(0) = − 0.459 )
as

− ην

ξν
 x1/2 Φ(0)

Φ′(0)
 − 1.37 ν1/3(1 − ε)1/2 . (3.11)

Now, the ratio of probabilities W+
ν /W−

ν is close to unity when ην/ξν is small.
Obviously, for this ratio to be small, ε should be ever closer to unity with the
increase of ν.

For x � 1 the Airy function behaves as follows:

Φ(x)  1
2x1/4

exp
(
−2

3
x3/2

)
,

so that − ην/ξν → −1, and the ratio W+
ν /W−

ν vanishes. However, this region,
x � 1, is of no real interest since even the probability W−

ν is here exponentially
small.

Let us go over now to the quantum problem. In the semiclassical limit,
classical expression for the eccentricity

ε =

√
1 +

2EM2

me4
(3.12)

is rewritten with usual relations E = −me4/(2�
2n2) and M = �l as

ε =

√
1 − l2

n2
. (3.13)

We note that the exact expression for ε, valid for arbitrary l and n, is 6

ε =

√
1 − l(l + 1) + 1

n2
. (3.14)

Clearly, in the semiclassical approximation, the eccentricity is close to unity
only under condition l � n. If this condition does not hold, one may expect
that in the semiclassical limit the transitions with ∆l = −1 dominate. In
other words, as long as l � n, the probabilities of transitions with decrease
and increase of the angular momentum are comparable. But if the angular
momentum is not small, it is being lost predominantly in radiation. This
situation looks quite natural.

The analysis of the numerical values of transition probabilities (H. Bethe,
E. Salpeter, 1957) demonstrates that even for n and l comparable with unity

5See: L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields . §70.
6See: L.D. Landau and E.M. Lifshitz, Quantum Mechanics. §36.
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Table 3.1

W4p→3s

W4p→3d

W5p→4s

W5p→4d

W5d→4p

W5d→4f

W6f→5d

W6f→5g

W5p→3s

W5p→3d

W6p→3s

W6p→3d

exact
value 10 3.75 28 72 10.67 13.7

ε̄ 0.87 0.92 0.81 0.75 0.90 0.92

ν = ∆n 1 1 1 1 2 3

semiclassical
value 17.6 8.7 34 58 17.2 15.7

and ∆n  n, i.e., in the absolutely nonclassical region, the transitions with
∆l = −1 still are much more probable than those with ∆l = 1. The results
of this analysis for the ratio W−/W+ in some transitions are presented in
Table 3.1 (first line). Then we indicate in Table 3.1 the values of these ratios
obtained in the näıve semiclassical approximation. Here for the eccentricity
ε̄ we use the value of expression (3.14), calculated with l corresponding to
the initial state; as to n, we take its average value for the initial and final
states. The table demonstrates that the ratio of the näıve semiclassical results
to the exact ones remains within a factor of about two. Moreover, if one uses
as ε̄ expression (3.13), calculated in the analogous way, the numbers in the
last line change considerably. It is clear, nevertheless, that the semiclassical
approximation describes here, at least qualitatively, the real problem.

3.1.3 Expectation Value 〈r〉 in Hydrogen Atom, and Lattice
Constant for Alkali Metals

Let us come back to a classical particle with mass m, moving in the attracting
Coulomb field −e2/r along an ellipse with eccentricity ε, and find the mean
value of its radius < r >. The equation of motion of the particle is

r =
p

1 + ε cosφ
; (3.15)

here p = L2/(me2), where L is the classical angular momentum of the particle
(compare with (1.17)). The discussed mean value is
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< r >=
1
T

∫ T

0

dt r(t) ; (3.16)

here T = πe2
√

m/(2|E|3) is the period of particle rotation. Let us go over in
the last expression from integration over time to integration over angle φ with
the relation L = mr2dφ/dt for the angular momentum:

< r >=
m

TL

∫ 2π

0

dφ r3(φ) =
mp3

TL

∫ 2π

0

dφ

(1 + ε cosφ)3
. (3.17)

The factor at the last integral transforms to

mp3

TL
=

L5

me2

(
2|E|
me4

)3/2 1
2π

,

and the integral itself is∫ 2π

0

dφ

(1 + ε cosφ)3
=

π(2 + ε2)
(1 − ε2)5/2

.

Finally, after simple transformation with the account for relation (3.12), we
find

< r >=
1

me2

1
2

(
3me4

2|E| − L2

)
. (3.18)

For the hydrogen atom in the semiclassical limit, this expression can be
rewritten with the usual relations E = −m e4/(2�

2n2) and M = � l, as

< r >=
�

2

me2

1
2

(3n2 − l2) .

It is sufficient to change here, as usual, l2 → l(l+1), and we arrive at the exact
quantum-mechanical expression for the expectation value under discussion:

〈nl|r|nl〉 =
�

2

me2

1
2
[
3n2 − l(l + 1)

]
= a

1
2
[
3n2 − l(l + 1)

]
; (3.19)

here a is the Bohr radius.
Let us go over now from hydrogen to alkali atoms. In the ground state of

such atoms, the outer electron is in the ns1/2 state. If this state is semiclassical,
its energy can be found with the Bohr–Sommerfeld quantization rule for the
radial motion. At large distances from the nucleus, the outer electron moves in
the Coulomb field with charge Z = 1. However, at smaller distances the field
is rather different. This deviation from the Coulomb field can be described
formally as a change of the boundary condition at r = 0 for the wave function
of the outer electron. This change results in the change of the constant in the
quantization rule: nr goes over into nr − σ, and correspondingly, n goes over
into n∗ = n − σ. Thus, the energy of the outer electron in an alkali atom is
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Table 3.2

Li Na K Rb Cs

2 < r >= 3Ry/I 7.57 7.94 9.41 9.77 10.48

d/2 5.72 7.00 8.72 9.19 9.89

ā 6.61 8.08 10.06 10.60 11.42

En = − me2

2�2 (n − σ)2
= − me2

2�2n∗2 .

Now, due to relation (3.18), the mean orbit radius for the outer s electron is
(in the units of the Bohr radius)

< r >=
3
2

n∗2. (3.20)

It is natural to expect that the following estimate will be correct at least
qualitatively for the lattice constant of an alkali metal. This constant is about
twice as large as the mean radius of the free atom, i.e., it is close to

2 < r >= 3
Ry
I

; (3.21)

here Ry = me4/(2�
2) = 13.6 eV is the Rydberg constant, and I is the ioniza-

tion potential of the free atom.
Let us compare this prediction with the real values of the lattice constants.

All alkalis have body-centered cubic cells. Besides the edge of the cube ā, there
is here even shorter interatomic distance, which is half of the main diagonal
of the cube d/2 = ā

√
3/2. The results of comparison are presented in Table

3.2 (all values therein are given in units of the Bohr radius). Even for lithium,
where n = 2 and one could hardly expect that our semiclassical estimate
is applicable, its error constitutes about 25% only. For all other metals our
estimate hits the interval between d/2 and ā, i.e., it proves to be correct
quantitatively.

To paraphrase the known saying on mathematics and natural sciences, this
problem can be called an example of “inconceivable efficiency” of semiclassical
approximation in quantum mechanics.
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3.2 Simple Calculation of Expectation Values < 1/rn >
in Hydrogen Atom

The simplest calculation is that of the matrix element 〈1/r〉. Here it is suffi-
cient to recall the virial theorem, according to which the mean value of the
potential energy − e2/r of a particle bound by a Coulomb field is equal to
its doubled total energy, i.e., this mean value is −me4/(�2n2). It follows now
immediately that 〈

1
r

〉
=

me2

�2n2
=

1
a n2

, (3.22)

where a is the Bohr radius.
The next matrix element is 〈1/r2〉. Here it is convenient to use the fact

that the derivative of energy E over a parameter is equal to the mean value
of the derivative of Hamiltonian H over this parameter:

∂En

∂λ
=

〈
n

∣∣∣∣∣∂Ĥ

∂λ

∣∣∣∣∣n
〉

. (3.23)

Therefore, for an arbitrary central field with the Hamiltonian of radial motion

Ĥr = − �
2

2m

(
∂2

∂r2
+

2
r

∂

∂r

)
+

�
2l(l + 1)
2mr2

+ U(r) (3.24)

we obtain

∂Enrl

∂l
=
〈

nrl

∣∣∣∣∂Hr

∂l

∣∣∣∣nrl

〉
=
〈

nrl

∣∣∣∣�2(2l + 1)
2mr2

∣∣∣∣nrl

〉
. (3.25)

In particular, for the hydrogen atom, where

Enrl = − me4

2�2(nr + l + 1)2
,

we find easily from (3.25) that〈
nl

∣∣∣∣ 1
r2

∣∣∣∣nl

〉
=

m2e4

�4n3(l + 1
2 )

=
1

a2n3(l + 1
2 )

. (3.26)

Let us note that in the limit of large quantum numbers their total power
in both expectation values, (3.22) and (3.26), as well as in formula (3.19) for
< r >, coincides with the power of �. Of course, it should be so for any matrix
element which has a classical limit.

And now we go over to the matrix elements 〈δ(r)〉 = |ψ(0)|2 and 〈1/r3〉.
Here we use the identity

〈nl|
[

d

dr
, Hr

]
|nl〉 = 0 ,
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where the Hamiltonian of radial motion Hr is given by formula (3.24) with
U(r) = − e2/r. The explicit calculation of the commutator gives[

d

dr
, Hr

]
=

1
mr2

d

dr
− l(l + 1)

mr3
+

e2

r2
.

The value of 〈1/r2〉 was found earlier (see (3.26)). The first term on the right-
hand side transforms as follows:〈

1
r2

d

dr

〉
=
∫

dΩ

∫ ∞

0

ψ∗ 1
r2

dψ

dr
r2 dr

=
1
2

∫
dΩ

∫ ∞

0

d|ψ|2
dr

dr = −2π|ψ(0)|2 .

It differs from zero for l = 0 only. Thus, we find

〈nl| δ(r) |nl〉 = |ψnl(0) |2 =
m3e6

π�6n3
δl0 =

1
πa3n3

δl0 . (3.27)

And for l �= 0 we obtain〈
nl

∣∣∣∣ 1
r3

∣∣∣∣nl

〉
=

m3e6

�6n3l(l + 1)(l + 1/2)
(1 − δl0)

=
1

a3n3l(l + 1)(l + 1/2)
(1 − δl0). (3.28)

It is noteworthy that in the expectation value 〈1/r3〉 as well, the power
− 6 of � coincides in the classical limit l � 1 with the total power of quantum
numbers in the product n−3l−3. It is not the case, however, in the matrix ele-
ment (3.27), and this is quite natural: in the discussed problem the probability
density at the origin, |ψnl(0) |2, vanishes in the classical limit.

3.3 Thomas–Fermi Method

In the Thomas–Fermi approximation, the main qualitative characteristics of a
many-electron atom can be obtained with simple and intuitive considerations.

With the increase of the nuclear charge Z, the radius and volume of a
neutral atom do not change essentially. Both the radius of an atom and its
volume are determined by the external electron, which moves in the Coulomb
field of the nucleus screened by internal electrons. Due to this screening, the
external electron is mainly in an electric field of the same order of magnitude
as that in the hydrogen atom. However, since in the case of a many-electron
atom in its volume ∼ a3 there are Z electrons, the mean distances both from
an electron to the nucleus and between electrons are estimated as ∼ a/Z1/3.
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Somewhat more detailed derivation looks as follows. Let us write the den-
sity of electrons as 7

n(r) = ZαF (rZβ) . (3.29)

Then, their total number is

Z = 4π

∫ ∞

0

dr r2 n(r) = 4πZα−3β

∫ ∞

0

dxx2F (x) ,

so that α − 3β = 1.
In virtue of (3.29), the mean distance from an electron to the nucleus is

〈r〉 =

∫∞
0

dr r3 n(r)∫∞
0

dr r2 n(r)
∼ Z−β .

On the other hand, this distance behaves as Z−1/3. Hence β = 1/3. Now, in
virtue of α − 3β = 1, we get α = 2. As a result, the electron density is

n(r) = Z2 F (rZ1/3). (3.30)

Let us consider now the electrostatic potential created by an atom. This
potential changes from Z/r at r → 0, where the nucleus is not screened by
electrons, to zero at r → ∞, where the nucleus is screened completely. Since
the characteristic distance, at which the density of electrons changes, behaves
as Z−1/3, then the potential is naturally written as

φ(r) =
Z

r
f(rZ1/3) , (3.31)

where f(0) = 1, and f(∞) = 0. The mean potential energy of an electron is
−φ(r).

Due to the virial theorem, the mean kinetic energy T of an electron and its
mean potential energy U are comparable in modulus. Therefore, the estimate
for the mean electron momentum is

〈p〉 ∼
√

T ∼
√
|U | ∼

√
Z/〈r〉 ∼ Z2/3 . (3.32)

In this way we arrive at the estimate for the mean electron angular momentum:

〈l〉 ∼ 〈r〉 · 〈p〉
�

∼ Z1/3. (3.33)

Let us use relation (3.33) between l and Z to estimate the critical value
Zl, at which electrons first appear in the shell with given l. To this end, we
just put

Zl ∼ l3 . (3.34)

7From now on in this section we use atomic units.
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This estimate proves to be quite reasonable. Indeed, a numerical calculation
in the Thomas–Fermi approximation gives

Zl = 1.24 (l + 1/2)3 . (3.35)

The transition in the semiclassical approximation from l to l + 1/2 is quite
natural, and the numerical factor here is close to unity. The empirical relation
is

Zl = 1.36 (l + 1/2)3 . (3.36)

The total energy of an atom E is about Z times larger than the mean
potential energy of an electron, i.e.,

E ∼ −Z · Z · (Z−1/3)−1 = −Z7/3; (3.37)

Here the first and second factors Z are the number of electrons and the charge
of the nucleus, respectively, and the factor (Z−1/3)−1 is the inverse mean dis-
tance of an electron from the nucleus. Numerical calculations in the Thomas–
Fermi approximation result in E = − 0.76 Z7/3 (in atomic units, i.e., in the
units of me4/�

2 = 2 Ry = 27.2 eV). Empirically, this dependence of the
total energy on Z is confirmed, though with a factor close to 0.59. Again,
simple estimate (3.37) works reasonably well.

The used semiclassical analysis is certainly inapplicable to the first Bohr
orbit. Its radius is ∼ Z−1, and the nuclear charge Z is not screened here. So,
the energy of these two electrons is on the order of ∼ Z2. This is the leading
correction to the total energy (3.37), its relative magnitude is ∼ Z−1/3.

3.4 LS-Coupling Approximation. Explanation
of the Second Hund’s Rule

In many-electron atoms one can, with fair accuracy, describe the state of
each electron as a stationary state in some effective centrally symmetric field
created by the nucleus and by all the other electrons. Deviations from this
approximation in light atoms are due mainly to that residual part of the
Coulomb interaction, which has no spherical symmetry and therefore cannot
be reduced to a central potential. The energy splitting between atomic levels
having different total orbital angular momenta L and total spin S, is described
in light atoms by Hund’s rules.

According to the first Hund’s rule, the state with the maximum possible
total electron spin S for the given electron configuration has the minimum en-
ergy. The qualitative explanation of this rule is well-known. In the state with
the maximum total electron spin S, the spin wave function is “most symmet-
rical”. Therefore, by virtue of the Pauli principle, the coordinate wave func-
tion of this state is “most antisymmetrical”. This minimizes the probability of
finding electrons close to each other, and thus minimizes the electron–electron
Coulomb repulsion.
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But what is the origin of the second Hund’s rule according to which, for
a given S, it is the state with the maximum possible total orbital angular
momentum L that has the lowest energy? In some textbooks this rule, first
established empirically, is confirmed by direct (and rather tedious) calcula-
tions of the residual electron–electron Coulomb interaction. Here we present
a simple and transparent explanation of this rule.

Without any claims of generality, we confine ourselves to a simple example
of the system of two equivalent p-electrons, p2. According to the first Hund’s
rule, its lowest terms are the triplet ones, 3P 0, 1, 2.

As to the singlet terms, 1S 0 and 1D 2, their radial wave functions are the
same if one neglects the residual electron–electron interaction. Let us com-
pare, however, their angular wave functions. For a single p-electron this wave
function is nothing but a normalized component, Cartesian or spherical one,
of the unit radius-vector,

√
3ni. Then the total 1S 0 angular wave function,

again properly normalized, is
√

3 (n(1) · n(2)) , (3.38)

where the superscripts mark the unit vectors of the first and second electron,
respectively. As one of the 1D 2 states, let us choose, for instance, that with
Lz = +2. Its angular wave function is just the product of the single-electron
wave functions corresponding to lz = +1 each:√

3
2

(−n(1)
x − in(1)

y ) ·
√

3
2

(−n(2)
x − in(2)

y ). (3.39)

Let us consider the extreme case of the coinciding coordinates of the two
electrons. For n(1) = n(2), wave function (3.38) squared equals 3. And the
modulus squared of wave function (3.39) is

9
4

(n2
x + n2

y)2.

Even its maximum value, 9/4, is less than 3.
It is obvious from this example that the probability of finding the two elec-

trons close to each other in the D-state is less than in the S-state. Therefore,
the Coulomb repulsion in the D-state is more weak, and the D-state energy
is, correspondingly, lower.

Let us note that the wave function (3.38) is a scalar, it is invariant under
arbitrary rotations in the three-dimensional space. As to the wave function
(3.39), its symmetry is lower: it is invariant only under rotations around the
z axis, and only by modulus.

We note also that the 1S 0 state, which is of higher symmetry, generally
speaking is unstable. In principle, there is a radiative electric quadrupole tran-
sition from it into the less symmetric state 1D 2. Of course, the probability of
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this transition is tiny 8. Nevertheless, there is an undoubted resemblance here
to the well-known Jahn–Teller rule according to which in a degenerate electron
state of a molecule a symmetrical configuration of the nuclei is unstable.

To emphasize once more how essential is for our conclusions the fact that
the residual electron–electron interaction is repulsive, we consider the fol-
lowing example. Let electrons move in an attractive Coulomb (or Newton)
field, and the residual interaction between them is not repulsive, but attrac-
tive (gravitational atom). Obviously, in such a system the second Hund’s rule
(and the first one as well) changes to the opposite one.

In conclusion of this section, we mention the third Hund’s rule: for given
L and S, the energy of a shell filled less than by half grows with the total
angular momentum J . This rule originates from the spin–orbit interaction due
to which the energy of an electron grows with its total angular momentum j.
However, for a hole the sign of the spin–orbit interaction is opposite. Therefore,
if a shell is filled more than by half, its energy decreases with the growth of
J . As to a shell filled exactly by half, in it the splitting in J is absent to first
order in the spin–orbit interaction.

3.5 jj-Coupling Approximation. Intermediate Coupling

Let us consider now the opposite limiting case, that of the jj-coupling, when
the spin–orbit interaction is essentially stronger than the residual Coulomb
one. When neglecting that Coulomb interaction, the atomic Hamiltonian cor-
responds to a set of noninteracting electrons, each of which moves in the
potential

Veff(ra) + A(ra) l̂aŝa .

Since both Veff(ra) and A(ra) are centrally symmetric, in such a field both the
total angular momentum j = l±1/2 of a single electron and its projection mj

are conserved. From the single-electron states |nljmj〉 one constructs (taking
into account the Pauli principle) the atomic states with definite J and MJ .
Then, already with these states, one finds the corrections to the energy of an
atom caused by a residual interaction.

In fact, usually the case of jj-coupling in its pure form does not occur
in atoms. Though the spin–orbit interaction grows with Z, even in heavy
atoms it only reaches the same order of magnitude as the residual Coulomb
one. The simultaneous account of both interactions, the so-called intermediate
coupling approximation, requires usually sufficiently tedious calculations. We
will demonstrate, however, that even here important qualitative results can
be derived in a sufficiently simple way.

8 We note that the magnetic dipole transition 1S 0 → 3P 1 is forbidden. As
is known, the magnetic moment operator is proportional to Lz + 2Sz. Obviously,
neither Lz nor Sz can transform 1S 0 into 3P , as well as 1D 2 into 3P . Thus, in
the given electron configuration p2 only the following M1 transitions are possible:
3P 2 → 3P 1

3P 1 → 3P 0.
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3.5.1 Lead, Configuration p2

We start with the limiting case of jj-coupling when an electron is characterized
only by its total angular momentum j, equal for p-electron to 1/2 or 3/2. A
state of two p-electrons is described here by a set (j1 j2)J where the total
angular momentum runs through the values J = 0, 1, 2. Then the possible
states are:

(1/2 1/2)0 ; (1/2 3/2)1 , (1/2 3/2)2 ; (3/2 3/2)0 , (3/2 3/2)2 . (3.40)

The state (1/2 1/2)0 is the only one possible for j1 = j2 = 1/2. Indeed, by
virtue of the Pauli principle, one cannot construct here a state with Jz = ±1.
Hence, J = 1 is impossible here as well. By an analogous reason (one cannot
construct Jz = ±3), the states j1 = 3/2, j2 = 3/2 do not add up into J =
3. The state (3/2 3/2) with Jz = +1 can be constructed in only one way:
from the single-electron projections −1/2 and +3/2. However, one such state
should belong to J = 2, so that the state (3/2 3/2)1 does not exist. Since
an electron with larger j has larger energy, the sequence of levels, ordered
in accordance with the energy increase, looks as presented in (3.40), where
commas and semicolons separate states of the same energies and different
energies, respectively.

Now we recall that in the approximation of LS-coupling, according to
Hund’s rules, the sequence of levels, in the order of energy increase, should be
as follows:

3P0; 3P1; 3P2; 1D2; 1S0. (3.41)

As should be expected, the number of states with given total angular momen-
tum J is the same both in the LS- and jj-schemes of addition for angular
momenta. Besides, it follows from the comparison of schemes (3.40) and (3.41)
that the states (1/2 3/2)1 and 3P1 coincide. At last, the same comparison
demonstrates that in the case intermediate between the two limiting ones, jj
and LS, the states are ordered as follows:

J = 0; J = 1; J = 2; J = 2; J = 0.

Here the states with J = 0 are orthogonal linear combinations of 3P 0 and 1S0

in the LS-scheme, or (1/2 1/2)0 and (3/2 3/2)0 in the jj one. Analogously,
the states with J = 2 are orthogonal linear combinations of 3P 2 and 1D2, or
(1/2 3/2)2 and (3/2 3/2)2.

3.5.2 Bismuth, Configuration p3

We start the analysis of this configuration with the LS-coupling approxi-
mation. In the state with the maximum total spin S = 3/2, the spin wave
function of three electrons is completely symmetric (this is quite obvious for
its components with S = ±3/2, where the projections of all three spins should
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be the same). But then the coordinate wave function, in accordance with the
Pauli principle, is totally antisymmetric. For three p-electrons such a state is
constructed in the only way: the angular part of the coordinate wave function
should be proportional to the mixed product of the unit radius-vectors of the
three electrons, n1[n2 × n2], i.e., it should be a scalar. In other words, this
state is the only one: 4S3/2.

Then, the state with L = 3 in the discussed configuration should be to-
tally symmetric in the space variables, which is immediately clear again for
its components with L = ±3, where the projections of all three orbital an-
gular momenta should be the same. But then the spin function of this state
should be, correspondingly, totally antisymmetric, which is, obviously, impos-
sible with only two projections for the spin of each electron. Therefore, in the
configuration p3 the F -state is absent.

In line with the already mentioned 4S3/2 state, in the configuration p3 there
are the states 2D 3/2, 5/2 and 2P 1/2, 3/2, where both the coordinate function
and the spin one are neither totally symmetric nor totally antisymmetric.
By virtue of Hund’s rules, all possible states ordered in accordance with the
energy increase are

4S3/2; 2D 3/2, 5/2; 2P 1/2, 3/2 . (3.42)

We note that since the p-shell is filled here by half, the spin–orbit interaction
to first order does not lift the degeneracy in the total angular momentum J
in the 2D- and 2P -states.

Let us consider now the opposite limiting case of jj-coupling for the con-
figuration p3. Obviously, the state (1/2 1/2 1/2) is forbidden by the Pauli
principle. So, we consider the next state (1/2 1/2 3/2). Since, by virtue of
the same principle, two angular momenta 1/2 add up to 0 only, the discussed
state can only have the total angular momentum J = 3/2.

It was demonstrated in the previous subsection that two angular momenta
3/2 can add up only to 0 and 2. Then, it can be easily seen that for the state
(1/2 3/2 3/2) the total angular momentum can be equal to 1/2, 3/2, and 5/2.

And at last, the state (3/2 3/2 3/2). Again by virtue of the Pauli prin-
ciple, if the projection of the total angular momentum of one electron is
+3/2, then for two other projections the single combination +1/2,−1/2 is
possible. Therefore, the maximum projection of the total angular momen-
tum is here Jz = +3/2. Correspondingly, for the total angular momentum
the maximum value is the same: J = 3/2. Just the same, the projection
Jz = +1/2 of the total angular momentum arises here in only one combina-
tion: +3/2, +1/2,−3/2. Since one such state should be already ascribed to
J = 3/2, the state (3/2 3/2 3/2)3/2 is here the single one.

Thus, in the limit of the jj-coupling, the configuration p3 possesses the
following states:

(1/2 1/2 3/2)3/2; (1/2 3/2 3/2)1/2, (1/2 3/2 3/2)3/2, (1/2 3/2 3/2)5/2;
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(3/2 3/2 3/2)3/2. (3.43)

Their energies increase together with the number of electrons with j = 3/2;
the three states (1/2 3/2 3/2)1/2, 3/2, 5/2 stay degenerate in the limit of the
jj-coupling.

Certainly, the number of the states with given total angular momentum
J here is also the same in the LS- and jj-schemes of addition for angular
momenta. Then, the states with total angular momenta 1/2 and 5/2, each of
which occurs only once in both schemes, coincide:

2D5/2 = (1/2 3/2 3/2)5/2; 2P 1/2 = (1/2 3/2 3/2)1/2 .

And at last, from the comparison of (3.42) and (3.43) it follows that in the
case intermediate between the two limiting ones, LS and jj, both the ground
state and the highest one have the angular momentum J = 3/2, and the state
with J = 1/2 is the one closest to the highest level. As to the relative position
of the last two levels with angular momenta 3/2 and 5/2, it cannot be fixed
with such qualitative arguments. The real succession of the levels belonging
to the ground state configuration p3 in bismuth is as follows:

J = 3/2; J = 3/2; J = 5/2; J = 1/2; J = 3/2 .

Here the states with J = 3/2 are orthogonal linear combinations of 4S3/2,
2D 3/2, and 2P3/2 in the LS-scheme, or (1/2 1/2 3/2)3/2 , (1/2 3/2 3/2)3/2, and
(3/2 3/2 3/2)3/2 in the jj-scheme. Let us note that the separation between
the middle level with J = 3/2 and the next one with J = 5/2 (we recall that
their relative position could not be determined with qualitative arguments)
proves to be the least one in the considered configuration. In other words,
these two levels are closer indeed to degeneracy than all the rest.

3.6 Hydrogen Atom in Strong Magnetic Field

As distinct from other problems considered in the present chapter, this one re-
quires real calculations. This problem was solved for the first time by R.J. El-
liott and R. Loudon (1960). The solution presented below 9 looks like the most
direct, transparent, and complete one. Though it requires some calculations,
one may hope that these properties justify its presentation in this chapter
which is on the whole of more qualitative character.

We start with an obvious observation: in a sufficiently strong magnetic field
B (the exact criteria are discussed below) the motion of an atomic electron
becomes almost one-dimensional, along the magnetic field, and is described
by the Coulomb potential − e2/z.

The corresponding one-dimensional wave equation is

9It was given by I.B. Khriplovich and G.Yu. Ruban (2004).
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u′′ +
(
− 1

4
+

n∗

z

)
u = 0. (3.44)

We have introduced in it the usual dimensionless variable:
2z

an∗ −→ z ,

here a = �
2/mee

2 is the Bohr radius, me is the electron mass, n∗ is the
effective quantum number, related to the electron energy as

En∗ = − mee
4

2�2n∗2 . (3.45)

Equation (3.44) coincides exactly with the radial equation for the s-wave in the
three-dimensional Coulomb potential − e2/r, and therefore has the common
hydrogen spectrum

n∗ = n = 1, 2, 3, ... , E−
n = − mee

4

2�2n2
, (3.46)

and the set of solutions

u−
n (z) = exp (−z/2) z Φ(−n, 2; z) , (3.47)

where Φ is the confluent hypergeometric function (here and below we are not
interested in the normalization factors). These solutions vanish at the origin.
They are continued in the natural way to z < 0, so that the resulting solutions
on the whole z axis are odd under the transformation z → −z (as reflected
by the superscript “minus” in (3.46), (3.47)).

There is, however, an essential difference between the present problem
and the s-wave Coulomb one. In the last case (3.47) is the only solution. The
reason is in fact as follows. One may expect in a näıve way that the radial wave
equation for R(r)(= u(r)/r) has two independent solutions, which behave for
r → 0 as R ∼ const (u ∼ r) and R ∼ 1/r (u ∼ const), respectively; both
these functions are normalizable. In fact, however, R ∼ 1/r is no solution
at all for the homogeneous wave equation if the point r = 0 is included
in consideration, since �(1/r) = −4πδ(r). This is why usually the second
solution is rejected. As to our problem, equation (3.44) does not describe
really the vicinity of z = 0, since therein we have to consider seriously the
magnetic field itself. Therefore, there are no reasons here to discard those
solutions of (3.44) which tend to a constant for small z (and of course decrease
exponentially for z → ∞).

Such solutions for our problem at z > 0 are conveniently presented as
follows 10:

10See: I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products.
New York, Academic Press, 1994. We use formula 9.327.1 from this book for µ = 1/2,
omit in this formula the overall factor 1/Γ (1/2 + µ − λ) inessential for our purpose
(the notations here are the same as in the quoted book) and rewrite the series at
ln z in a compact form, as a confluent hypergeometric function.
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u+
n∗(z) = exp (−z/2)

{
1 − n∗z

(
ln z F (1 − n∗, 2; z)

+
∞∑

k=0

Γ (1 − n∗ + k) [ψ(1 − n∗ + k) − ψ(k + 2) − ψ(k + 1)]
Γ (−n∗) k! (k + 1)!

zk+1

)}
; (3.48)

here ψ(α) is the logarithmic derivative of the gamma function: ψ(α) =
Γ ′(α)/Γ (α). Functions (3.48) are in a natural way continued to z < 0,
so that the resulting solutions on the whole z axis are even under the trans-
formation z → −z (as reflected by the superscript “plus” in the eigenfunctions
(3.48) and in the corresponding eigenvalues obtained below).

Under any reasonable regularization of the logarithmic singularity at
z = 0, first derivative of the even solutions should vanish at z → 0. From
this condition we obtain the following equation for the eigenvalues of n∗:

ln
a

aB
=

1
2n∗ + ψ(1 − n∗) . (3.49)

Here the formal logarithmic divergence at z → 0 is cut off at the typical radius
aB of electron orbits in the magnetic field B, aB ∼ √

�c/eB 11. We solve
equation (3.49) in the logarithmic approximation, i.e., under the assumption

λ = ln a/aB � 1. (3.50)

This assumption has allowed us also, in the derivation of equation (3.49), to
omit in its rhs the term 1 − ψ(1) − ψ(2) = −2ψ(1)), which is on the order of
unity.

For small n∗, the rhs of equation (3.49) is dominated by 1/(2n∗), so that
the smallest root of this equation is

ν+
0 =

1
2λ

, (3.51)

and the ground state energy equals

E+
0 = − mee

4

2�2
ln2

(
�

3B

m2
ee

3c

)
. (3.52)

If n∗ is not small, then terms 1/(2n∗) in the rhs of equation (3.49) can
also be neglected. In this case the eigenvalues of n∗ are close to the poles of
the function ψ(1− n∗). It is known 12 that the poles of the function ψ(x) are
situated at negative integer n, starting from zero, and the residue in each of

11See for instance: L.D. Landau and E.M. Lifshitz, Quantum Mechanics. §112,
Problem 1.

12See: I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products.
New York, Academic Press, 1994.
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them is − 1. In other words, for n∗  n + ε, n = 1, 2, 3, ..., the function ψ
behaves as follows:

ψ(1 − n∗)  1
ε

.

Thus, in the vicinity of a positive integer n∗, equation (3.49) reduces to

λ =
1
ε

.

As a result, the roots of equation (3.49) discussed here are

n∗+
n = n +

1
λ

, n = 1, 2, 3, ... , (3.53)

and the corresponding energies equal

E+
n = − mee

4

2�2n2

[
1 − 4

n
ln−1

(
�

3B

m2
ee

3c

)]
. (3.54)

To summarize, the spectrum of the hydrogen atom in a strong magnetic
field looks as follows. Each Landau level in this field serves as an upper limit
of a succession of discrete levels of the Coulomb problem for the motion along
the z axis. This discrete spectrum consists of a singlet ground state, with the
energy given by formula (3.52), and of close doublets of odd and even states
with energies given by formulas (3.46) and (3.54). Over each Landau level,
there is also a continuous spectrum corresponding to the motion along the z
axis.

This picture is valid for sufficiently low Landau levels, as long as the radius
of a magnetic orbit is much less than the Bohr radius. Obviously, in a strong
magnetic field this description fails for large magnetic quantum numbers, i.e.,
in the semiclassical region. Here the orbit radius can estimated from the well-
known solution of the problem of an electron in a magnetic field 13. The
electron spectrum looks as follows:

E = �
eB

mec
(N + 1/2), N = nρ +

m + |m|
2

, (3.55)

where nρ is the radial quantum number for the motion in the xy plane, and
m is the angular momentum projection onto the z axis. The semiclassical
estimate for the magnetic radius is

aB(N) ≈
√

�c

eB
N = aB

√
N .

Thus this picture of levels is valid quantitatively as long as

13See for instance: L.D. Landau and E.M. Lifshitz, Quantum Mechanics. §112,
Problem 1.
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λ = ln
a

aH
� ln N. (3.56)

At last, let us consider the correspondence between the obtained system
of levels in a strong magnetic field and the hydrogen spectrum in the limit
of vanishing external field. An elegant solution of this problem belongs to
W.H. Kleiner (1960).

The crucial observation here is as follows. While changing the magnetic
field from a vanishingly small to a very strong one, the number of nodal
surfaces of a given wave function remains the same. A hydrogen wave function
(in zero magnetic field) with quantum numbers n, l, m has nr = n − l − 1
nodal spheres, where the radial wave function Rnl(r) turns to zero, and l − |m|
nodal cones with their axes directed along z, where the angular wave function
Ylm(θ, φ) (to be more precise, the associated Legendre polynomial P

|m|
l (cos θ))

turns to zero.
With the increase of the magnetic field, the nodal spheres become ellipsoids

of rotation, more and more prolate, tending to cylinders in the limit of infinite
field. The correspondence between nr and the quantum number nρ, which
refers to the motion in the xy plane in a strong magnetic field, becomes
obvious from this picture:

nρ = nr. (3.57)

Let us go over to the evolution of the hydrogen nodal cones. Due to both
equation (3.57) and the conservation of the total number of nodal surfaces, the
number nz of the nodes of a solution of equation (3.44) should coincide with
the number of nodes of the corresponding associated Legendre polynomial
P

|m|
l (cos θ)),

nz = l − |m|. (3.58)

In other words, l − |m| nodal cones of a hydrogen wave function evolve into
nz planes of constant z corresponding to the nodes of an eigenfunction of
equation (3.44).

Of course, the projection m of the angular momentum onto the direction
of magnetic field retains its meaning in the course of the whole evolution of
this field.

Let us consider, for instance, the ground state in the magnetic field, with
N = 0 (see (3.55)). Obviously, it is degenerate, and its corresponding magnetic
wave functions have nρ = 0 and m = 0, −1, −2 ... . We confine further to its
lowest sublevel, corresponding to the ground state of equation (3.44), with
nz = 0. By virtue of the above arguments, the hydrogen ancestors of these
wave functions should have nr = 0 and l = |m|. In other words, these ancestors
are:

1s; 2p, m = −1; 3d, m = −2; and so on.

In fact, the ratio �
3B/(m2

ee
3c) becomes comparable to unity only for very

strong magnetic fields, of about 109 gauss. Of course, even much higher mag-
netic fields are required for the logarithm of this ratio to be much larger than
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unity. However, in semiconductors with a small effective mass of current car-
riers, for the electron–hole bound states the corresponding critical magnetic
field turns out to be much lower. For example, in InSb it constitutes 1900 gauss
only.



4

Deuteron—The Hydrogen Atom of Nuclear
Physics

It is known that Fermi usually started the investigation of a difficult problem
with the question: “What plays the part of a hydrogen atom for this prob-
lem?” As for nuclear physics, the answer to this question causes no doubts:
its hydrogen atom is the deuteron. It is surprising how many nontrivial prob-
lems related to the deuteron can be solved by means of sufficiently simple,
sometimes truly back-of-the-envelope analytical calculations. Some of them
are considered in this chapter.

4.1 Neutron–Proton System in Zero-Range
Approximation

The deuteron is the simplest of nuclei, except neutron and proton, n and p.
This is the bound np state with the orbital angular momentum L = 0 and
total spin S = 1. In fact, the deuteron wave function contains, in line with
3S1, a small admixture of 3D1, which will be neglected in our discussion. The
deuteron binding energy, ε = 2.23 MeV, is anomalously small on the nuclear
scale. As a result, its wave function decreases very slowly beyond the range of
nuclear forces.

Indeed, beyond this range the deuteron wave function satisfies the free
wave equation

− 1
2µ

1
r

d 2(rψ)
dr2

= − εψ . (4.1)

Here µ = mp/2 is the reduced mass of the np system; the masses of the
neutron and proton are put coinciding, mn = mp, and the Planck constant �

is put equal to unity. The normalizable solution of this equation is

ψ ∼ e−κr

r
; κ =

√
mpε = 45.7 MeV . (4.2)
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The characteristic distance κ
−1 = 4.3 fm 1, at which solution (4.2) falls down,

is much larger than the range of nuclear forces r0  1.2 fm. This allows one
to use for the deuteron wave function the so-called zero-range (of nuclear
forces) approximation where this function is approximated by its asymptotic
expression (4.2) and equals

ψd =
√

κ

2π

e−κr

r
; (4.3)

the factor
√

κ/2π in this expression guarantees the correct normalization:∫
drψ2

d = 1.
The wave function of the continuous spectrum of np system beyond the

range of nuclear forces is written as usual in the form

ψ(k, r) = eikz + f(k, θ)
eikr

r
,

where θ is the scattering angle, and f(k, θ) is the scattering amplitude. In
the low-energy limit (i.e., at small k), which we are interested in, scattering
occurs in the s-state mainly (so that the dependence on θ disappears), and
the wave function of continuous spectrum simplifies to

ψ = 1 − α

r
, (4.4)

where α = − lim f(k)|k→0 is the so-called scattering length.
Correspondingly, the wave function of the triplet 3S1 state of continuous

spectrum of the neutron–proton system in the low-energy limit is

ψSt = 1 − αt

r
, (4.5)

where αt = 5.42 fm is the triplet scattering length. The analogous expression
for the singlet 1S0 function of continuous spectrum is

ψSs = 1 − αs

r
. (4.6)

The singlet scattering length is negative and very large: αs = −23.7 fm. The
subscript S at the wave function here and below denotes the S-wave, the
subscripts t and s denote triplet and singlet states, correspondingly. We note
that not only αs, but αt as well, are much larger then the typical range of
nuclear forces r0  1.2 fm.

In the zero-range approximation, the deuteron binding energy is directly
related to the triplet scattering length. Indeed, from the orthogonality of
triplet wave functions (4.3) and (4.5), which refer to different energies, the
relation

1 1 fm (fermi) = 10−13 cm.
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αt =
1
κ

(4.7)

follows immediately. It is valid with accuracy ∼ 20% (compare the numerical
values αt = 5.4 fm and κ

−1 = (mpε)−1/2 = 4.3 fm).
Let us note that in a system with a negative scattering length in general,

and in the singlet np state in particular, bound states cannot exist. Indeed,
the lowest of the bound states has no nodes, i.e., its radial wave function is of
definite sign. On the other hand, this radial function should be orthogonal to
function (4.4), which is certainly impossible with α < 0 when the last function
is of definite sign also.

If α > 0, then formally the wave function of a bound state in the form
exp(−r/α)/r, orthogonal to (4.4), always exists. In fact, however, this function
can serve as a true solution of the problem only under condition α � r0.
Therefore, to guarantee the existence of a bound state, the scattering length
should not only be positive, but also much larger than the range of potential.
Otherwise, a bound state may or may not exist.

4.2 Radiative Capture of Neutron by Proton

We consider now the reaction np → dγ. As usual, this electromagnetic transi-
tion is dominated by the lowest multipolarities, E1 and M1. Let us compare
their intensities for slow neutrons, such that their energy is much smaller than
ε, and correspondingly, the relative momentum p in the initial state is small
as compared to κ.

The operator of E1 transition VE = − e rE does not change the total spin
of the system, so that this transition proceeds from the initial 3P state. In the
zero-range approximation, the wave function of this state can be considered
as a free one. The corresponding matrix element is

< 3P |r|3S >=
∫

dr e−iprr
√

κ

2π

e−κr

r
= − i 4

√
2π α

7/2
t p (4.8)

(for arbitrary p and spherically symmetric function 3S, vector r “chooses” by
itself the P -wave from e−ipr; to our approximation, it is sufficient to put at
once e−ipr = 1 − ipr).

Let us go over now to the M1 operator. One may omit in it the orbital
momentum contribution, since we neglect the D-wave admixture. Thus, the
M1 operator reduces to

VM = − e

2mp
(µpσp + µnσn)B . (4.9)

Here σp and σn are the spin operators of the proton and neutron, respectively;
µp = 2.79 and µn = −1.91 are their magnetic moments; the velocity of light c
is put equal to unity, as well the Planck constant �. The spin operator in this
expression is conveniently rewritten as follows:



48 4 Deuteron—The Hydrogen Atom of Nuclear Physics

µpσp + µnσn =
1
2

(µp + µn)(σp + σn) +
1
2

(µp − µn)(σp − σn). (4.10)

The structure 1
2 (σp + σn) in this expression is the total spin operator of

the nucleons, which might couple the deuteron only with the 3S1 state of the
continuous spectrum. However, the coordinate wave functions of the deuteron
and this initial state are orthogonal, so that the total spin operator is not
operative in the present case. Thus, the M1 transition from the singlet 1S0

state of the continuous spectrum proceeds due to the operator

ṼM = − e

4mp
(µp − µn)(σp − σn)B . (4.11)

The radial matrix element reduces here to the overlap integral of the wave
functions (4.3) and (4.6):√

κ

2π

∫ ∞

0

4πr2dr
(
1 − αs

r

) e−r/αt

r
=

√
8παt(αt − αs). (4.12)

Let us compare now the intensities of the E1 and M1 transitions. Since
the electric and magnetic fields of emitted photon are equal by modulus, we
have to estimate only the ratio of matrix elements (4.8) and (4.12) (the last
one should be additionally multiplied by (µp−µn)/(4mp)). An elementary es-
timate demonstrates that the M1 transition dominates as long as the relative
momentum in the center-of-mass frame is bounded by condition

p2 <∼
(µp − µn)2(αt − αs)2

64α6
t m

2
p

.

The corresponding bound on the neutron energy (in the laboratory frame) is

En <∼0.1 MeV . (4.13)

Just this region of slow neutrons, where the M1 transition dominates, is con-
sidered below.

When calculating the cross-section of radiative capture, one can do without
the rather tedious standard technique of Clebsch–Gordan coefficients. To this
end, let us consider the contribution of operator (4.11) directly to the matrix
element squared, summed over the projections m of the deuteron spin. Using
the completeness relation for the deuteron wave functions, we obtain∑

m

〈1S0| (σp − σn)B∗|3S1, m〉〈3S1, m| (σp − σn)B|1S0〉

= 〈1S0| [(σp − σn)B]2 |1S0〉.
By virtue of spherical symmetry of the |1S0〉 state, this expression reduces to

1
3
|B|2 〈1S0|(σp − σn)2|1S0〉 =

1
3
|B|2 〈1S0| 6 − 2σpσn|1S0〉.
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We note further that |1S0〉 is eigenstate of operator

(σp + σn)2 = 6 + 2σpσn

with eigenvalue 0. And then

(6 − 2σpσn)|1S0〉 = 12|1S0〉 .

Thus, the discussed matrix element squared is equal to 4|B|2. Since the vector
potential of emitted photon is

A∗ =

√
4π

2ω
e∗ eiω(t−inr) , n = k/k , (ne) = 0 ,

we have 4|B|2 = 8πω. Now we sum over two possible polarizations λ of the
emitted photon, and obtain∑

m,λ

〈1S0| (σp − σn)Bλ|3S1, m〉〈3S1, m| (σp − σn)Bλ|1S0〉

= 16πω = 16πε . (4.14)

Then, the radial matrix element (4.12) squared is

8παt(αt − αs)2.

At last, we have to take into account the phase volume of the final state

2π

∫
δ(ε − ω)

4πω2dω

(2π)3
=

ε2

π
, (4.15)

and to divide the intermediate result by the current density of incoming neu-
trons v. Besides, we should recall that a reaction with unpolarized neutron
and proton is considered, so that all four possible np states with the orbital
angular momentum 0: 1S0 and 3S1, m = −1, 0, 1, are of the same probabil-
ity 2. Since only one of them serves as an initial one, the result should be
divided by 4.

Finally, after simple calculations we arrive at the following expression for
the total cross-section of the neutron radiative capture:

σrc = 2π α (µp − µn)2
(

1 − αs

αt

)2 (
ε

mp

)3/2 1
m2

p

1
v

, (4.16)

2Of course, one can obtain the same number of possible spin states for two un-
polarized particles with spin 1/2 otherwise, independently of their orbital angular
momentum. It is sufficient to count all possible combinations of their spin projec-
tions: (+ +), (+ –), (– +), (– –).
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here α = e2. Let us note that for the so-called thermal neutrons, with energy
<∼0.1 eV, this cross-section is huge, due to the factor 1/v (c/v in the common
units).

Exactly in the same way one can find the total cross-section of the deuteron
photodissociation which is the reaction inverse with respect to the considered
radiative neutron capture. The cross-sections of the two reactions are related
through the principle of detailed balance. In other words, they differ, first, by
the number of spin final states: 3 possible deuteron polarizations and 2 photon
polarizations, altogether 6 final states in np → dγ; 2 possible polarizations
both for the proton and neutron, altogether 4 final states in γd → np . Then,
the phase volumes of the final states: ε2/π in np → dγ (see (4.15)) and

2π

∫
δ

(
ω − ε − 2 · p2

2mp

)
dp

(2π)3
=

m
√

m(ω − ε)
2π

(4.17)

in γd → np . And finally, the initial fluxes: v in np → dγ and 1 (c in common
units) in γd → np . With the account for all these factors, the total cross-
section of the deuteron photodissociation equals (E. Fermi, 1935)

σphd =
2π

3
α (µp − µn)2

(
1 − αs

αt

)2 √
ω − ε

ε

1
m2

p

. (4.18)

In conclusion, let us discuss briefly the radiative capture of polarized ther-
mal neutrons. Will the produced photon be polarized in this case? Within the
approximation applied here, it will not. Since the initial state 1S0 is totally
spherically symmetric, the polarization of an initial particle is not transferred
to a final one. However, due to the admixture of D state in the deuteron wave
function and in the incoming wave, the M1 transition proceeds also from the
triplet initial state. Besides, due to the D wave admixture, the E2 transi-
tion becomes possible as well. And at last, relativistic corrections to the M1
operator, responsible for nonadditivity of the nucleon magnetic moments in
deuteron, also make possible the magnetic dipole transition from the triplet
initial state. All these effects are tiny, but their investigation gives information
on delicate details of the np interaction at low energies.

4.3 Three-Body Problem in Zero-Range Approximation

We address now the three-body problem, under the same assumption that
the scattering lengths for any pair of the bodies are large as compared to the
range of potential. If the two-body scattering lengths are positive, so that any
two of the particles can produce a bound state, then it is only natural that
there are bound states in the three-particle system as well. The remarkable
observation is that even for negative scattering lengths as well (when there are
no two-body bound states!) in a three-body system bound states may arise
(V. N. Efimov, 1970).



4.3 Three-Body Problem in Zero-Range Approximation 51

For the beginning, we present a very qualitative, but instructive argument
in favor of this assertion. Let the scattering length of particle 1 on each of
particles 2 and 3 be large (though negative). It means that particle 1 resides
for a long time in shallow potential wells near each of particles 2 and 3 (though
does not form a bound state with either of these particles separately). Then, an
additional attraction arises between particles 2 and 3, as a result of tunneling
of particle 1 between these two wells 3. Of course, generally speaking, particle 1
is in no way singled out as compared to particles 2 and 3, so that a similar
attraction arises between 3 and 1, and between 1 and 2. This is a collective
three-particle effect.

Now we are going over to more quantitative estimates. We assume for
simplicity sake that the particle masses are the same, m1 = m2 = m3 = m,
and the two-body scattering lengths are the same as well, α12 = α23 = α31

= α. Let us estimate with qualitative arguments the effective potential U of
the discussed system. In our zero-range approximation this potential should be
independent of r0. On the other hand, we assume that the (negative) scattering
length is large, |α| � 1, so that it also should not enter the expression for U .
Then the dimensional arguments result in the following expression:

U = − ξ
�

2

mR2
. (4.19)

It is natural to consider the discussed potential as an attractive one, so that
the dimensionless constant ξ is positive. As to an effective length R in this ex-
pression, it should be a symmetrical function of all three coordinates. Besides,
since expression (4.19) describes an essentially three-body effect, it should van-
ish when one of the particles goes to infinity. Then the simplest expression for
R2 is

R2 = r2
12 + r2

23 + r2
31 .

At the vanishing energy and ξ > 1/4, the wave function, which describes
the motion along the generalized coordinate R, can be written as 4

Ψ ∼ 1√
R

cos
(√

ξ − 1/4 ln
R

r0
+ const

)
. (4.20)

This expression refers to the region where all relative coordinates rij , and
hence R as well, exceed the range of r0 of two-body potentials. On the other
hand, the effective potential (4.19) was constructed under the assumption that
the scattering lengths are large, i.e., that R < |α|. Therefore, the number of
nodes n of wave function (4.20) in the interval r0 < R < a, i.e., the number
of levels, of bound states with negative energy, is

3Let us recall in this connection the molecular hydrogen ion H+
2 . Here the bound

state forms due to the tunneling of the electron (particle 1) between the potential
wells near two nuclei (particles 2 and 3). However, this example differs from our
problem essentially since each nucleus by itself bounds the electron.

4See: L. D. Landau and E. M. Lifshitz, Quantum Mechanics. §35.
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n =
1
π

√
ξ − 1/4 ln

a

r0
. (4.21)

Whether condition n > 1, under which these levels really exist, is valid,
depends on the values of ratio a/r0 and of parameter ξ, i.e., on the concrete
dynamics of the problem. At any rate, this is a problem of a very delicate effect,
of states that are bound very weakly. Therefore, the experimental observation
of such states and the proof that their nature is due indeed to the discussed
effect, is extremely difficult. No wonder therefore that the first convincing
experimental proof of the existence of the Efimov effect was obtained only
recently, though not in a system of nucleons, but in the gas of ultracold cesium
atoms (T. Kraemer et al., 2006).

In conclusion, let us come back to potential (4.19) and wave function
(4.20). If this potential is applicable for arbitrary small R, i.e., if the range
r0 of two-body potentials tends to zero, then solution (4.20) describes in fact
in this limit fall to the center 5. In other words, the three-body problem is
unstable in this limit, it has no ground state (L. Thomas, 1935).

Certainly, this assertion is directly related to nuclear physics. It is suffi-
cient to recall, for instance, the tritium nucleus which is the bound state of
a proton and two neutrons. The zero-range approximation is absolutely inap-
plicable for its description. Moreover, the above arguments are generalized in
an elementary way for larger number of particles, N > 3. Thus, the deuteron
is the only nucleus for which the zero-range approximation results in a stable
state.

5See again: L.D. Landau and E.M. Lifshitz, Quantum Mechanics. §35.



5

Semiclassical Approximation in Complex Plane

5.1 General Notions

As is known, the semiclassical approximation applies to the solution of the
Schrödinger equation

− �
2

2m

d2ψ(x)
dx2

+ U(x)ψ(x) = Eψ(x) (5.1)

if the potential U(x) changes slowly at the distances on the order of the de
Broglie wavelength of the particle, i.e., at those distances where the solu-
tion ψ(x) itself varies essentially. Equation (5.1) can be rewritten somewhat
otherwise:

d2ψ(x)
dx2

+ k2(x)ψ(x) = 0 , k2(x) =
2m

�2
[E − U(x)] . (5.2)

Now the condition of applicability of the semiclassical approximation is that
k(x) should vary slowly at the distances on the order of 1/k(x). Equation (5.2)
describes in fact a sufficiently wide class of phenomena, in no way confined to
quantum mechanics. One such problem will be considered below.

In view of the universality of semiclassical approximation, it is useful to
formulate its applicability limits in general form, irrespective of quantum me-
chanics. Let

k2(x) = k2
0 q(y) , y = x/R ;

here R is the typical distance where k2(x) varies, and q(y) is comparable with
unity everywhere, but the vicinity of the so-called turning point x0, where
k(x) vanishes. Then equation (5.2) transforms to

ε2 d2ψ(y)
dy2

+ q(y)ψ(y) = 0 , (5.3)

where
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ε = 1/(k0R) � 1 .

Thus, the region of applicability of the semiclassical approximation is the
problems which reduce to differential equations with a small coefficient at the
higher derivative. If we come back to quantum mechanics, in it this parameter,

ε = �/(p0R) ,

is nothing but the smallness of the Planck constant � as compared to the
typical action p0R of the considered system.

As is known, in the semiclassical approximation the independent solutions
ψ+ and ψ− of equation (5.2) are as follows:

ψ± =
1√
k(x)

exp{± i Φ(x)}, Φ(x) =
∫ x

dx k(x) . (5.4)

These solutions approximate the true ones with a powerlike accuracy in ε 1.
The semiclassical approximation is obviously inapplicable near the turning

point x0, where k(x0) = 0. Meanwhile, a rather typical formulation of problem
is that the semiclassical asymptotics of a solution is known on one side of the
turning point x0, and one has to construct with it the correct asymptotics on
the other side of this point. An effective solution of such problems is based
on going out of the real axis to the complex plane of independent variable.
It is applicable as well when the turning points themselves lie in the complex
plane. The concrete version of this technique used below goes back to A.
Zwaan (1929) 2. It looks to be the most natural and reliable one.

5.2 One Turning Point. Reflection from Barrier

We start with a simple and well-known problem. Let a particle be reflected off
a potential barrier (see Fig. 5.1) at a point x0, so that the equation k2(x) = 0
has here a simple root. In the classically inaccessible region, inside the barrier,
the solution decreases to the left of x0. One should find the semiclassical
solution to the right of this point.

Usually, this problem is solved as follows. In the vicinity of the turning
point x0 the potential is approximated by a linear function. Then in this
region one constructs the exact solution (this is the so-called Airy function)
which decreases exponentially inside the barrier, and at last the asymptotics
of this solution is found to the right of x0.

We will proceed otherwise. Let us choose x0 as the origin, and the scale
such that k2(z) = z in a sufficiently large vicinity of this origin (here, and

1See for instance: L.D. Landau and E.M. Lifshitz, Quantum Mechanics. §46.
2About forty years ago it was a sort of “common knowledge” of a group of the-

orists from the Institute of Nuclear Physics in Novosibirsk; among them one should
mention first of all S.S. Moiseev, R.Z. Sagdeev, A.I. Vainshtein, and G.M. Zaslavsky.
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x0

Fig. 5.1

only here, the present approach does not differ from the standard one). Then
in solutions (5.4)

k(z) = z1/2, k−1/2(z) = z−1/4, Φ(z) =
∫ z

0

z1/2 =
2
3

z3/2.

Thus, the semiclassical solutions (5.4) have the branching point at z = 0. The
cut starting at it is conveniently drawn to the right along the real semi-axis
z (see Fig. 5.2). Obviously, both on the upper and the lower sides of the cut
the phase Φ(z) of solutions ψ± is real. These are the so-called lines of level
where both solutions are equal by modulus. Two more lines of level, with
arg z = 2π/3 and arg z = 4π/3, start at the origin z = 0. Four lines of level
(marked by numbers) and the cut are presented in Fig. 5.2.

Fig. 5.2

The change of arg Φ(z) under the transition from one line of level to another
looks as follows:
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line of level 1 2 3 4
arg z 0 2π/3 4π/3 2π

argΦ(z) 0 π 2π 3π

Hence, the following relations among the solutions hold:

between lines of level 1 and 2 |ψ−| � |ψ+|,
between lines of level 2 and 3 |ψ−| � |ψ+|,
between lines of level 3 and 4 |ψ−| � |ψ+|.

The solution we are interested in, is exponentially small in the classically
inaccessible region, i.e., it coincides with ψ− on the negative real semi-axis.
Therefore, clearly it equals to ψ− on the lines of level 2 and 3. Then, at the
transition from the line 2 via the upper half-plane to the line 1 (i.e., to the
upper side of the cut), the coefficient at the solution ψ−, which is exponentially
large on this path, remains the same. However, since the accuracy of the
asymptotic solutions (5.4) themselves is only powerlike, there are no reasons
to assume that the second asymptotic solution, which is exponentially small
in the region between 2 and 1, will not arise under this transition 3. We write
therefore the wave function on the upper side of the cut as ψ− + a ψ+, where
a is some coefficient, unknown at the moment.

Just in the same way, at the transition from the line 3 to the line 4 (i.e.,
to the lower side of the cut), the wave function on this side of the cut turns
out to be equal to ψ̃− + b ψ̃+, where b is one more unknown coefficient. Tildes
in the last expression have appeared due to the following reason. In fact, the
origin is a regular point for our exact equation, so that the exact solution
has here no cut at all, the cut arises in the semiclassical approximation only.
It follows hence that the solutions on the upper and lower sides of the cut
should coincide. And of course, they coincide indeed. First, at the transition
from the upper side of the cut to the lower one by going around the origin, i.e.,
when arg z increases by 2π, arg Φ(z) = arg(z3/2) increases by 3π, so that the
phase Φ(z) of our solution changes sign. Besides, as a result of going around
the origin, the argument of the preexponential factor k−1/2(z) = z−1/4 in the
solution changes by −π/2, i.e., the solution itself is multiplied by −i. As a
result, we obtain

ψ̃± = −i ψ∓ .

Therefore, in fact,
ψ̃− + b ψ̃+ = −i ψ+ − i b ψ− .

And this, in turn, should be equal to

ψ− + a ψ+ .

As a result, a = − i, b = i, and the solution on the right semi-axis is
3Change of the form of an asymptotic solution in the course of its analytic

continuation from one region to another is called the Stokes phenomenon.
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1√
k(z)

{
exp

[
−i

∫ z

0

k(z)dz

]
+ e−iπ/2 exp

[
i

∫ z

0

k(z)dz

]}
.

On the other hand, the wave function on the left semi-axis is

ψ− =
1√
k(z)

exp
[
−i

∫ z

0

k(z)dz

]
=

e−iπ/4√|k(z)| exp
[
−
∫ z

0

|k(z)|dz

]
.

Thus, asymptotics on the negative left and positive right semi-axes are
matched as follows:

e−iπ/4√|k(z)| exp
[
−
∫ z

0

|k(z)|dz

]

−→ 1√
k(z)

{
exp

[
−i

∫ z

0

k(z)dz

]
+ e−iπ/2 exp

[
i

∫ z

0

k(z)dz

]}
,

or, in a more convenient form,

1
2
√|k(z)| exp

[
−
∫ z

0

|k(z)|dz

]

−→ 1
2
√

k(z)

{
exp

[
−i

∫ z

0

k(z)dz + iπ/4
]

+ exp
[
i

∫ z

0

k(z)dz − iπ/4
]}

=
1√
k(z)

cos
{∫ z

0

k(z)dz − π/4
}

. (5.5)

In conclusion of this section, we note that in the particular case k(z) = z1/2

the known asymptotics of the Airy function Ai(z) follow from formula (5.5) 4.
For real z, at z −→ −∞

Ai(z)  1
2|z|1/4

exp(−2
3
|z|3/2) , (5.6)

and at z −→ ∞

Ai(z)  1
z1/4

cos
(

2
3
z3/2 − π/4

)
=

1
z1/4

sin
(

2
3
z3/2 + π/4

)
. (5.7)

As distinct from the standard derivation of these asymptotics, we need here
neither the integral representation of the Airy function, nor the steepest de-
scent method. Simple algebra was in fact quite sufficient for us.

4The common form of asymptotics (5.6), (5.7) is somewhat different; it corre-
sponds to the situation when the classically inaccessible region lies to the right of
the turning point, but not to the left, as in our derivation.
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5.3 Two Turning Points. Bohr–Sommerfeld Quantization
Rule

Ψb
− = ei δ Ψa

−

3a

2a
3b

2b

ba

Fig. 5.3

Let us consider the problem of motion in a potential well between two
turning points a and b. In this problem a cut in the complex plane z is con-
veniently drawn along the real axis between these points, in the classically
accessible region (see Fig. 5.3). We assume that the semiclassical approxima-
tion is applicable at large distances from both turning points a and b, but no
assumption is made on its applicability in the region between these points.

On the real axis beyond the interval ab the solution is exponentially small.
Such semiclassical solutions to the left and to the right of this interval can be
chosen as ψa− and ψb−, respectively. It can be done not only on the mentioned
parts of the real axis, but as well in the sectors of the complex plane including
these parts (superscripts a and b mean that the phases Φ(z) of the correspond-
ing functions are counted off the points a and b, respectively). Of course, these
solutions look the same way also on the lines of level going to infinity from the
points a and b. As to other regions of the complex plane, sufficiently far from
the turning points a and b, the functions ψa

− and ψb
− are exponentially large.

Therefore, the farther lie these regions from the turning points, the better ψa
−

and ψb− approximate the true solution. In fact, functions ψa− and ψb− differ
by a phase factor only. We choose as an asymptotic semiclassical solution an
appropriate linear combination of these functions denoted from now on by
ψ− ; its concrete form is inessential for us.

Let us take now the true solution at some point z and go with it around a
closed contour with the cut inside it (see Fig. 5.3); for the sake of definiteness,
let us go clockwise. We assume that the exact solution has no singularities
inside the chosen contour. Then this solution, being single-valued, comes back
to its initial value, up to an additional overall phase 2πn where n is an integer.

Let this contour be at first far away from the turning points, so that the
true solution on it is well approximated by the semiclassical one ψ−. With this
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approximate solution, we squeeze now the initial contour in such a way that
it goes along the upper and lower sides of the cut. Then, the phase acquired
after going around the cut is

δ =
∮

k(z)dz = 2
∫ b

a

k(z)dz .

Besides, an additional phase arises due to the preexponential factor in the
semiclassical solution. To take into account both turning points, we write this
factor as

[(z − a)(z − b)]− 1/4 .

For the chosen direction of going around the contour, the contribution of the
preexponential factor to the phase is π. Thus, we arrive at the following rule:∮

k(z)dz + π = 2πn .

Shifting n by unity, we obtain the quantization rule in the standard form:∮
k(z)dz = 2π

(
n +

1
2

)
, (5.8)

or ∫ b

a

k(z)dz = π

(
n +

1
2

)
.

The accuracy of quantization rule (5.8) is determined by the accuracy with
which the semiclassical function ψ− approximates the true solution. And in
turn, this depends on how far away from the turning points one can go without
coming across new turning points or singularities of the differential equation
itself. For the oscillator potential mω2z2/2, the only singular point of the dif-
ferential equation is at infinity, and there are only two turning points, a and b,
just those considered when the quantization rule was derived. In this deriva-
tion, we did not assume that the semiclassical approximation was applicable
in the region between the turning points. Just due to it, the quantization rule
(5.8) is exact for an oscillator, it is valid not only for large n, but even for
n = 0 as well.

Obviously, the existence of only two turning points is a special feature just
of the oscillator potential which is quadratic in z. With any nonlinear addition
to the oscillator potential, or for instance when changing it to βz4, the number
of turning points in the complex plane increases, so that the quantization rule
(5.8) is not exact anymore.

On the other hand, while in the complex plane, at large distance from
the turning points a and b any oscillator function is well approximated by
the semiclassical solution ψ−, in the region between the turning points the
situation is different. Here the semiclassical asymptotics for the oscillator wave
functions is valid, as usual, for large n only.
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5.4 Two Turning Points. Underbarrier Transition

a b

Fig. 5.4

Let the energy of a wave, incident from the left on a potential barrier,
be less than the maximum of the latter (see Fig. 5.4). This wave is partially
reflected from the barrier, but partially penetrates it and goes farther to the
right out of the barrier. Correspondingly, in the complex plane z there are two
turning points a and b on the real axis (see Fig. 5.5). Let us find the coefficients

4b

1b
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−

i d−1Ψ̃a
− Ψb

+ + i Ψb
−

ba
3a

2a

Ψb
+d−1(Ψa

+ + i Ψa
−)

d−1Ψa
+ Ψb

+

d−1 Ψa
+

Fig. 5.5

of transition and reflection in the semiclassical approximation. As well as
the problem of quantization considered above, this problem can be solved
without the assumption that the semiclassical approximation is applicable in
the region between the turning points. The only condition necessary is that
this approximation applies outside, at large distances from the points a and
b. However, here this general solution turns out rather tedious. Therefore, we
confine ourselves below to a detailed consideration of a more simple particular



5.4 Two Turning Points. Underbarrier Transition 61

case when the semiclassical approximation applies also in the region between
the turning points.

Obviously, at the exit from the barrier, to the right of the point b, there
is a transmitted wave ψb

+ only; the coefficient at ψb
+ is made equal to unity

for the time being. The cut starting at the point b is chosen going to the right
along the real axis, so that ψb

+ is a solution on its upper side, i.e., on the line
1b. Since in the sector between the level lines 1b and 2b the function ψb

+ is
exponentially small, this function serves as the solution on the line 2b as well.
On the other hand, the solution on the lower side of the cut, on the line 4b,
looks as iψb

−. The line of reasoning, completely analogous to that used in the
previous section, leads to the conclusion that the solution on the line 3b is
ψb

+ + i ψ b−.
We note here that the solution in the complex plane, found now, is the

second linearly independent solution for a single turning point (the first one
was obtained in Section 5.2).

Then, the lines of level 2a and 2b coalesce at infinity (see Fig. 5.5), so
that the solutions on them should coincide asymptotically. Therefore, on the
line 2a the solution is ψb

+ as previously, though it is convenient to rewrite it,
shifting the origin from b to a:

ψb
+(z) = exp

[
i

∫ a

b

k(z)dz

]
ψa

+(z) = d−1 ψa
+(z) .

We recall here that, by virtue of obvious physical arguments, the coefficient

d = exp

[
i

∫ b

a

k(z)dz

]
= exp

[
−
∫ b

a

|k(z)|dz

]
(5.9)

should be exponentially small. However, up to the preexponential factor,
inessential in the present case, it coincides with ψa

+(b). It means that in the
considered sector |ψa

+| � |ψa
−|. To satisfy this inequality, we draw the cut

starting at the branching point a, along the line of level going down from this
point 5. After it we find easily (see Fig. 5.5) the solution of interest for us on
the line of level going to the left along the real axis:

d−1 (ψa
+ + i ψa

−) .

We recall here that in the sector between the lines of level 2b and 3b the
solution ψb

− is exponentially small. No wonder therefore that no trace of it
is left on the lines of level 1a and 2a after the transition from the system of
lines b to the system of lines a via the point at infinity. On the other hand,
ψa
− is exponentially large in the sector between the lines of level 2a and 1a,

and therefore cannot arise during this transition.
5An option is to draw the cut from the point a to the left along the real axis

(symmetrically with the cut drawn from the point b to the right), but to choose here
otherwise the sheet of the Riemann surface.
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Thus, the asymptotics on the left and on the right on the real axis are
matched (after additional multiplication by d) in the following way:

ψa
+ + i ψa

− −→ dψb
+ .

This relation can be somewhat improved, if one recalls that the sum of the
transition and reflection coefficients, i.e., D = d 2 and R (which is the modulus
squared of the coefficient at ψa

−), respectively, should be equal to unity. Then
we find:

ψa
+ + i

(
1 − 1

2
d 2

)
ψa
− −→ dψb

+ . (5.10)

In concluding this section, we present the result for the transition and
reflection coefficients, derived without the assumption of applicability of
semiclassical approximation between the turning points, i.e., without the
assumption that d 2 is exponentially small:

D =
d 2

1 + d 2
; R =

1
1 + d 2

; D + R = 1 . (5.11)

5.5 Two Turning Points. Overbarrier Reflection

Let us consider now the following problem. A wave comes (from the left)
to a smooth barrier, and the energy of the wave exceeds the maximum of
the barrier (see Fig. 5.6). In the classical mechanics in this case there is no
reflection from the barrier at all. In fact, the whole real axis z is a line of level,
without any turning points on it.

Fig. 5.6

However, in the complex plane z turning points exist. Since both the po-
tential and the particle energy are real, these turning points arise as complex
conjugate pairs. We will take into account only those two turning points that
are closest to the real axis (see Fig. 5.7). We assume besides that the poten-
tial tends to zero sufficiently rapidly for Re z −→ ±∞, so that the two lines
of level originating from each turning point, a and a∗, asymptotically tend
to the real axis for ±∞. The picture of lines of level presented in Fig. 5.7
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resembles that of Fig. 5.6 which describes the underbarrier transition. The
difference consists, first, in the rotation by π/2 around the origin. Then, for
a real potential the scheme of level lines here certainly transforms into itself
under complex conjugation, i.e., under the reflection with respect to the real
axis. (In the problem of underbarrier transition the potential is not obligato-
rily symmetric under the reflection x −→ −x.) And at last, here there is one
more line of level — the real axis. The cuts starting at the turning points,
a and a∗, are conveniently drawn as presented in Fig. 5.7 (by analogy with
Fig. 5.3).

Again, it is clear from physical arguments that on the real axis for x −→ ∞
the solution looks as ψ0

+, where the index 0 means that its phase is counted
off the origin. This solution should coincide with the wave ψa

+ on the level
line 3a, which tends asymptotically to the real axis for +∞. One should only
include the factor related to the different starting points in ψ0

+ and ψa
+:

ψ0
+(z) ∼ exp

{
i

∫ z

0

k(z)dz

}
= exp

{
i

∫ a

0

k(z)dz +
∫ z

a

k(z)dz

}
,

so that
ψ0

+(z) = r1/2ψa
+(z) ,

r1/2 = exp
{

i

∫ a

0

k(z)dz

}
= exp

{
−i

∫ 0

a

k(z)dz

}
∼ ψa

−(0) .

In this section we are not interested in the preexponential factor k−1/2, and
therefore we do not write it explicitly; of course, when constructing the correct
solutions ψa, this factor is taken into account properly.
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Since in the sector between the level lines 2a and 3a the solution ψa− is
exponentially small, then

r1/2 = exp
{
−i

∫ 0

a

k(z)dz

}
= exp

{
−
∫ 0

a

|k(z)|dz

}
� 1 .

The arguments, quite analogous to those used in the previous sections, allow
one to construct easily the solution on the line 2a. It is equal to r1/2(ψa

+−iψa
−),

and should coincide with the asymptotic solution on the left real semi-axis.
Now we go over in this solution to counting the phase from the origin, and
thus rewrite it in the form ψ0

+−ir ψ0
−. As a result, the correspondence between

the asymptotic solutions on the left and right real semi-axes is

ψ0
+ − irψ0

− −→ ψ0
+ .

This relation can also be improved since the sum of the reflection and transi-
tion coefficients, i.e., of R = r 2 and the modulus squared of the coefficient at
ψ0

+, respectively, should be equal to unity. As a result, we obtain

ψ0
+ − i r ψ0

− −→
(

1 − 1
2

r 2

)
ψ0

+ . (5.12)

We note that the coefficient of the overbarrier reflection R = r 2 can be written
as (compare with (5.9))

R = r 2 = exp

{
−2i

∫ a∗

a

k(z)dz

}
= exp

{
−2

∫ a∗

a

|k(z)|dz

}
� 1 . (5.13)

The quite natural question may arise: what will happen if the solution
on the real axis will be constructed starting from the lines of level 1a∗, 2a∗,
originating from the turning point a∗? The point is that in the region between
the lines of level 1a∗ and 2a∗ the solution ψa∗

+ is exponentially small. Therefore,
if this solution is valid on the line 1a∗ which goes to the right, then it is the
same on the line 2a∗, going to the left. In other words, here we do not see any
overbarrier reflection at all (as distinct from the transition from the line 3a
to the line 2a).

To see the reason for this discrepancy, let us express our solution (5.12)
for z −→ −∞ via the solutions counted off the turning point a∗:

ψ0
+ − i r ψ0

− = r−1/2ψa∗
+ − i r3/2ψa∗

− = r−1/2[ ψa∗
+ − i r2ψa∗

− ] .

Thus, on the line of level 2a∗ the coefficient at the reflected wave is of second
order in the parameter |r| � 1, as compared to the coefficient at the incoming
wave. However, effects of second order in the exponentially small quantity r
are beyond the accuracy of our calculation. In other words, there is no con-
tradiction with the solution (5.12). However, the analysis of the lower system
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of levels simply does not guarantee the accuracy required for calculating the
coefficient of overbarrier reflection in the used approach.

At last, we present in this case as well the result for the transmission
and reflection coefficients, derived without the assumption that the semiclas-
sical approximation is applicable between the turning points, i.e., without the
assumption that r 2 is exponentially small:

D =
1

1 + r 2
; R =

r 2

1 + r 2
; D + R = 1 . (5.14)

In conclusion, let us come back to the exponentially small result (5.13). Its
applicability is in fact essentially limited for the following reason. This result
is true under the assumption that the potential is described by a smooth
analytic function. Under actual conditions, however, a real physical potential
can contain random perturbations, of the characteristic scale comparable to
the de Broglie wavelength or even less than it. Though being small, such
irregular perturbation results typically in a contribution to the coefficient of
the overbarrier reflection which falls down not exponentially with momentum,
but much weaker, only as its power6. Whichever of the effects dominates in
the overbarrier reflection, the regular exponentially small one (5.13), or the
powerlike suppressed effect of small random perturbations, depends in fact on
the concrete conditions of the problem.

5.6 What Is the Accuracy of Adiabatic Invariant?

The problem of the accuracy of adiabatic invariants is an example of applica-
tion of differential equations with a small coefficient at the higher derivative
beyond quantum mechanics.

As a concrete problem, let us consider a linear oscillator with a frequency
dependent on time. The corresponding differential equation

ẍ + ω2(t)x = 0

coincides, up to notations, with equation (5.2). As to the frequency ω(t),
we will assume that it is a slowly varying function of t, which tends to the
same limit ω for t −→ ±∞. (Correspondingly, in equation (5.2) k(x) tends to
k =

√
2mE/� for x −→ ±∞ where the potential U(x) turns to zero.)

Following A.M. Dykhne (1960), we will use the fact that this problem, up to
notations, coincides with the problem of the overbarrier reflection, considered
above. One should only take into account that the physical coordinate x±, as
distinct from ψ±, is real. Thus, the solutions at infinity look here as follows:

6See, for instance: L. D. Landau and E. M. Lifshitz, Quantum Mechanics. §52,
Problem 3.
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x(t −→ −∞) = Re(x+ − ir x−) = x0 (cos Φ − r sin Φ) ,

x(t −→ ∞) = Re
(

1 − r 2

2

)
x+ = x0

(
1 − r 2

2

)
cosΦ .

Here we include in x0 the preexponential factor ω−1/2(t); anyway, we are not
going to differentiate it, since it would go beyond the accuracy of the employed
semiclassical approximation.

We note now that for a harmonic oscillator the adiabatic invariant

I = (2π)−1

∮
p dq

is equal to the ratio of the Hamiltonian H to the frequency ω7. Let us consider
this ratio for t −→ ±∞ (recalling that Φ̇ = ω by definition):

I(t −→ −∞) =
m

2ω
(ẋ2 + ω2x2)|t−→−∞

=
mωx2

0

2
[
(− sin Φ − r cosΦ)2 + (cos Φ − r sin Φ)2

]
=

mωx2
0

2
(1 + r 2) ,

I(t −→ ∞) =
mωx2

0

2
(1 − r 2) .

Their difference,

I(t −→ ∞) − I(t −→ −∞) = −m ωx2
0r

2, (5.15)

is exponentially small, together with r 2 (see (5.13)).
In other words, the adiabatic invariant of a harmonic oscillator is conserved

with an exponential accuracy for slowly varying frequency8.

7To convince oneself of this fact, it is sufficient for instance to compare in quan-
tum mechanics the eigenvalues of the Hamiltonian and the truncated action (which
is an adiabatic invariant), �ω(n + 1/2) and �(n + 1/2), respectively.

8Of course, this conclusion is also valid only under the condition that the dis-
cussed regular exponentially small effect dominates over that of small random per-
turbations of the potential (see Section 5.5).
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Quantum Electrodynamics. Again Minimum
Calculations

6.1 Spin in Electromagnetic Field

6.1.1 Covariant Equation of Motion of Spin

We start with the spin precession for a nonrelativistic charged particle. The
equation that describes this precession is well-known:

ṡ =
eg

2m
[s × B] . (6.1)

Here B is an external magnetic field, e and m are the charge and mass of
the particle, g is its gyromagnetic ratio (for electron g ≈ 2)1. In other words,
the spin precesses around the direction of magnetic field with the frequency
−(eg/2m)B. In the same nonrelativistic limit the velocity precesses around
the direction of B with the frequency −(e/m)B:

v̇ =
e

m
[v × B] . (6.2)

Thus, for g = 2 spin and velocity precess with the same frequency, so that the
angle between them is conserved.

Let us note that both equations, (6.1) and (6.2), hold as Heisenberg equa-
tions of motion in an external field for the spin and velocity operators, s and
v. On the other hand, being averaged over properly localized wave packets,
these equations go over into (semi)classical equations of motion for spin and
velocity. This refers also to the relativistic generalizations of equation (6.1),
discussed in this section below.

We will consider at first the covariant semiclassical formalism using the
four-dimensional vector of spin Sµ. This 4-vector is defined as follows. In
the particle rest frame Sµ has no time component and reduces to the com-
mon three-dimensional vector of spin s, i.e., in this frame Sµ = (0, s). In the

1We put the velocity of light c equal to 1.
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reference frame where the particle moves with velocity v, the vector Sµ is
constructed from (0, s) by means of the Lorentz transformation, so that here

S0 = γvs , S = s +
γ2v(vs)
γ + 1

. (6.3)

Then, just by definition of Sµ, the following identities take place:

SµSµ = −s2 (= const), Sµuµ = 0 ; (6.4)

as usual, here uµ is the four-velocity.
The right-hand side of the equation for dSµ/dτ should be linear and ho-

mogeneous both in the electromagnetic field strength Fµν , and in the same
four-vector Sµ, and may depend also on uµ. By virtue of the first identity (6.4),
the right-hand side should be four-dimensionally orthogonal to Sµ. Therefore,
the general structure of the equation we are looking for is

dSµ

dτ
= αFµνSν + βuµFνλuνSλ . (6.5)

Comparing the nonrelativistic limit of this equation with (6.1), we find

α =
eg

2m
.

Now we take into account the second identity (6.4), which after differentiation
in τ gives

uµ
dSµ

dτ
= −Sµ

duµ

dτ
,

and recall the classical equation of motion for a charge:

m
duµ

dτ
= eFµνuν . (6.6)

Then, multiplying equation (6.5) by uµ, we obtain

β = − e

2m
(g − 2) .

Thus, the covariant equation of motion for spin is

dSµ

dτ
=

eg

2m
FµνSν − e

2m
(g − 2)uµFνλuνSλ (6.7)

(Ya. I. Frenkel, 1926; L. Thomas, 1927; V. Bargman, L. Michel, V. Telegdi,
1959).

Let us discuss the limits of applicability for this equation.
Of course, typical distances at which the trajectory changes (for instance,

the Larmor radius in a magnetic field) should be large as compared to the
de Broglie wavelength �/p of the elementary particle. Then, the external
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field itself should not change essentially at the distances on the order of the
de Broglie wavelength �/p. For ultrarelativistic particles, when the Compton
wavelength �/(mc) exceeds the de Broglie one, the external field should not
change essentially at the distances ∼ �/(mc). If the last condition does not
hold, the scatter of velocities in the rest frame is not small as compared to c,
and one cannot use in this frame the nonrelativistic formulas.

Besides, if the external field changes rapidly, the motion of spin will be
influenced by interaction of higher electromagnetic multipoles of the particle
with field gradients. For a particle of spin 1/2 higher multipoles are absent,
and the gradient-dependent effects are due to finite form factors of the particle.
These effects start here at least in second order in field gradients and usually
are negligible.

At last, in equation (6.7) we confine ourselves to effects of first order in
the external field. This approximation relies in fact on the implicit assumption
that the first-order interaction with the external field is less than the excitation
energy of the spinning system. Usually this assumption is true and the first-
order equation (6.7) is valid. Still, one can easily point out situations when
this is not the case. To be definite, let us consider the hydrogen-like ion 3He+

in the ground s-state with the total spin F = 1. It can be easily demonstrated
that an already quite moderate external magnetic field is sufficient to break
the hyperfine interaction between the electron and nuclear magnetic moments
(a sort of Paschen–Back effect). Then, instead of a precession of the total spin
F of the ion, which should be described by equations (6.1) or (6.7) with a
corresponding ion g-factor, we will have a separate precession of the decoupled
electron and nuclear spins.

Let us go back now to equation (6.7). We note that for g = 2 and in the
absence of an electric field, its zeroth component reduces to

dS0

dτ
= 0.

Taking into account definition (6.3) for S0 and the fact that in a magnetic field
the particle energy remains constant, we find immediately that the projection
of spin s onto velocity, so-called helicity, is conserved.

6.1.2 Noncovariant Equation of Motion for Spin
of Relativistic Particle. Thomas Precession

We will obtain now the relativistic equation for the three-dimensional vector
of spin s, that directly describes the internal angular momentum of a particle
in its “momentary” rest frame. This equation can be derived from (6.7) using
relations (6.3), together with the equations of motion for a charge in external
field. It will require, however, quite tedious calculations. Therefore, we choose
another way, somewhat simpler and much more instructive.

First, we transform equation (6.1) from the comoving inertial frame, where
the particle is at rest, into the laboratory one. The magnetic field B′ in the
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rest frame is expressed via the electric and magnetic fields E and B given in
the laboratory frame, as follows:

B′ = γB− γ2

γ + 1
v(vB) − γv × E.

This expression can be easily checked by comparing it component by com-
ponent with the transformation of magnetic field for two cases: when this
field is parallel to the velocity and orthogonal to it, respectively. Then
one should take into account that the frequency in the rest-frame time t
is γ times smaller than the frequency in the laboratory time τ (indeed,
d/dt = dτ/dt · d/dτ = γ−1d/dτ). Found in this way the contribution to the
precession frequency is

ωg = − eg

2m

[
B− γ

γ + 1
v(vB) − v × E

]
.

However, it is clear from equation (6.7) that spin precesses even if g = 0.
To elucidate the origin of this effect, the so-called Thomas precession (L. Tho-
mas, 1926), we consider two successive Lorentz transformations: at first from
the laboratory frame S into the frame S′ that moves with the velocity v with
respect to S, and then from S′ into the frame S′′ that moves with respect to S′

with the infinitesimal velocity dv. Let us recall in this connection the following
fact related to usual three-dimensional rotations: the result of two successive
rotations with respect to noncollinear axes n1 and n2 contains in particular
a rotation around the axis directed along their vector product n1 × n2. Now
it is only natural to assume that the result of the above successive Lorentz
transformations will contain in particular a usual rotation around the axis
directed along dv × v. In the result, spin in the rest frame will rotate in the
opposite direction by an angle which we denote by κ [ dv×v ]. Here κ is some
numerical factor to be determined below. It depends generally speaking on
the particle energy.

This is in fact the Thomas precession. Its frequency in the proper time τ
is

ω′
T = κ [ dv/dτ × v ] = κ

e

m
[E′ × v ].

Now we transform the electric field E′ from the proper frame into the labora-
tory one, as was done above for the magnetic field B′, and go over also from
the proper time τ to t. In the result, the frequency of the Thomas precession
in the laboratory frame is

ωT = κ
e

m

[(
E− γ

γ + 1
v(vE) + v × B

)
× v

]
= −κ

e

m

[
v × E− v2B + v(vB)

]
.

To find the coefficient κ, we recall that in a magnetic field, for g = 2 the
projection of spin onto the velocity is conserved. In other words, in this case
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the total frequency of the spin precession ω = ωg + ωT coincides with the
frequency of the velocity precession which is well known to be

ωv = − e

mγ
B .

From this we find easily that κ = γ/(γ + 1) . Correspondingly, the relativis-
tic equation of motion for the three-dimensional vector of spin s in external
electromagnetic field is

ds
dt

= (ωg + ωT ) × s =
e

2m

{(
g − 2 +

2
γ

)
[s × B]

− (g − 2)
γ

γ + 1
[s × v](vB) −

(
g − 2γ

γ + 1

)[
s × [v × E]

]}
. (6.8)

We note also that the relativistic Hamiltonian for the interaction of the
three-dimensional vector of spin with external electromagnetic field is written
in the usual form:

H = ωs . (6.9)

Not only does it generate via the standard relation

ds
dt

=
i

�
[H, s] (6.10)

equation (6.8). For instance, it is a simple problem to obtain with this Hamil-
tonian equations of motion of the quadrupole moment of a relativistic particle
in electric and magnetic fields, neglecting the field gradients. In the particle
rest frame, the operator of its quadrupole moment is

qmn =
3q

2s(2s − 1)

[
smsn + snsm − 2

3
s(s + 1)δmn

]
;

here the structure in square brackets guarantees the symmetry and vanishing
trace of this operator, qmn = qnm , qmm = 0; the overall factor at the square
brackets corresponds to the normalization condition qzz = q for sz = s. To
calculate the commutator in the corresponding equation

dqmn

dt
=

i

�
[ωksk, qmn] , (6.11)

is an elementary problem.

6.2 Spin in Electromagnetic Field. New Applications

6.2.1 Single-Photon Radiative Transition between Atomic s-Levels

The discussed transition is a magnetic dipole one since the initial and final
states have the same parity. However, this M1 transition is strongly forbid-
den. Indeed, the matrix element of the magnetic dipole moment operator
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µ = (e/2m) (l + σ) (here and in the next subsection we put � = 1) vanishes
in this case since the radial wave functions of two different atomic states are
orthogonal. Besides, the matrix element of the orbital momentum operator l
between s-states turns to zero identically.

As to the operator σ, its contribution does not vanish due to the retarda-
tion effects in the magnetic field, i.e., due to the higher terms of the expansion
in the ratio of the atomic size to the wavelength:

< 2|(σB) exp(ikr)|1 >≈ − 1
6

(σB) k2 < 2| r2|1 >; (6.12)

here we have taken into account the spherical symmetry of the wave functions.
The expression k2 < 2| r2|1 > transforms as follows:

k2 < 2| r2|1 > = < 2| (E2 − E1)2r2|1 > = < 2| [H0[H0, r
2]] |1 >

=
2
m

< 2| 2U + r(dU/dr)|1 > , H0 =
p2

2m
+ U(r) . (6.13)

In line with this, essentially relativistic effect of second order in v/c, one
should take into account the corrections of the same order in the Hamiltonian
(6.9) for the electron. The corresponding approximate Hamiltonian is con-
veniently presented as follows (for the time being, for an arbitrary spin and
g-factor):

H ′ = − e

2m

{
(g − v2)B − 1

2
(g − 2)v(vB) − (g − 1)v × E

}
s

= − e

2m

{(
g − p2

m2

)
B − (g − 2)

2m2
p(pB) (6.14)

− (g − 1)
m

(p − eA) × E
}

s .

In the case under discussion now, that of an atomic electron, one can put
with good accuracy g = 2 and neglect the second term in the curly brackets
in formula (6.14). Besides, we go over in this formula from the spin operator
s to σ = 2s. As a result, we obtain

H ′ = − e

2m

{(
1 − p2

2m2

)
B− 1

2m
(p − eA) × E

}
σ . (6.15)

As to the correction −(p2/2m2)B, the corresponding matrix element is

− 1
m

B < 2| p2/2m|1 >=
1
m

B < 2|U(r)|1 > . (6.16)

The vector product in the curly brackets is rewritten as follows:

− 1
2m

(p − eA) × E −→ − 1
2m

[A×∇U ] − 1
4m

[p× E− E × p];
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we take into account below the dependence of E on r, therefore the second
structure here is written in an explicitly Hermitian form. When calculating
the matrix element < A × ∇U >, one can neglect the dependence of the
photon magnetic field on coordinates. Then, the calculation is simplified by
choosing for the field A of the wave the gauge where A = (1/2)B× r:

− 1
2m

< 2| 1
2

[B × r] × (r/r)(dU/dr)|1 >=
B
6m

< 2| r(dU/dr)|1 > . (6.17)

Finally, when calculating the last term, the electric field of the wave is needed
to first order in ω. In the same gauge, one can put here E = (iω/2) B × r.
Then

iω

8m
< 2| [B× r] × p − p× [B × r]|1 >

= − iB
12m

< 2| [H0, rp + pr]|1 >=
B
6m

< 2| 2U + r(dU/dr)|1 > . (6.18)

With the account for (6.13) – (6.18), the matrix element of Hamiltonian
(6.15) reduces to the compact form:

< 2|H ′|1 >= − e

m
σB

1
3m

< 2|U |1 > .

Thus, the effective operator of the electromagnetic transition between s-levels
can be presented as

Heff = − e

2m
σB

2
3

U

m
. (6.19)

This operator applies not only to atomic hydrogen and hydrogen-like ions.
For instance, it applies also to the outer electron in alkaline atoms, of course
as long as one can confine to the single-particle approximation.

Quite standard calculation with operator (6.19) leads to the following
result for the probability of transition 2s → 1s + γ in hydrogen (where
U = −α/r):

Wγ =
α11m

2235
= 0.25 × 10−5 s−1. (6.20)

In other words, the lifetime of the 2s-state with respect to the discussed single-
photon transition is 4.7 days.

In fact, the main channel of the decay of the 2s-state in the absence of per-
turbations (external electric field, collisions) is the transition 2s → 1s + 2γ
with the emission of two E1-photons. Its probability is W2γ = 8.23 s−1.

6.2.2 Low-Energy Theorems for Compton Scattering

We start with the scattering of an electromagnetic wave on a charged spinless
particle. It is convenient to use here the Coulomb gauge where the vector
potential of the wave satisfies the conditions A0 = 0 and ∇A = 0 (or kA = 0
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in the momentum representation). The structure of the operator of first order
in the field is

V1 ∼ − e (p′ + p)A (6.21)

both in the nonrelativistic problem and in the relativistic one. We will use
the coordinate frame where the scatterer is initially at rest. It can be easily
seen that in this frame the operator V1 reduces to kA either for the incoming
photon (see Fig. 6.1, a), or for the scattered one (see Fig. 6.1, b) and thus
turns to zero. Together with it, the contribution to the Compton amplitude
arising in second order in the operator V1 vanishes as well.

a b c

Fig. 6.1

Let us go over now to the contribution of the operator of second order in
the field (see Fig. 6.1, c)

V2 ∼ e2 A2 . (6.22)

If the frequency of the incoming photon is much smaller than the mass m of
the target, then the velocity of the target after scattering is small, so that
the interaction of second order in the low-frequency limit is described by the
usual nonrelativistic operator

V =
e2

2m
A2. (6.23)

This operator generates the so-called Thomson amplitude

ATh = − e2

m
(e∗2e1) . (6.24)

Here e1,2 are the polarization vectors of the photons, incoming and scattered,
correspondingly (in this subsection we omit the standard normalization fac-
tors

√
4π/2ω at them). The overall numerical factor 1/2 in operator (6.23)

has disappeared from this amplitude, in accordance with two options for iden-
tifying the photons, initial and final, with two operators A in (6.23). We use
here and below the standard definition of the scattering amplitude where its
sign is opposite to that of the effective interaction.

We have derived here the Thomson amplitude (6.24) in fact under the
assumption that the particle interacts with the electromagnetic field to the
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lowest nonvanishing order of perturbation theory. As to other possible inter-
actions of this particle, they were all neglected. Therefore, the charge and
mass in this amplitude initially refer to a free particle, i.e., they are the bare,
unrenormalized ones. What will change if we take into account other possible
interactions of the scatterer, including also that with virtual photons? Cer-
tainly, these interactions will change the bare values of the charge and mass,
i.e., will renormalize them. Therefore in fact one should ascribe to e and m in
the amplitude (6.24) their observable, physical values.

Then, the problem is whether the interactions can change besides the nu-
merical factor in expression (6.24). In the employed approximation ω � m
this factor (equal to unity) coincides with the properly normalized time com-
ponent of the current density (in the momentum representation) at the van-
ishing momentum transfer. And the last quantity is nothing but the total
number of particles, which certainly does not change when interactions are
switched on.

Thus, formula (6.24) is the exact expression for the scattering amplitude
in the low-frequency limit, and e and m in it are the observable, physical
charge and mass of the scatterer. This is the first low-energy theorem for the
Compton scattering.

Let us go over now to the second low-energy theorem related to the spin of
the scatterer. It is quite natural that when the particle spin and its precession
in the field of the wave are included in consideration, a new contribution to the
scattering amplitude will arise. To calculate this effect, we use Hamiltonian
(6.14). In its terms linear in the field, we confine to the contribution of first
order in 1/c, and of course keep the term quadratic in the field (and in 1/c):

H ′′ = − eg

2m
Bs − e2(g − 1)

2m2
[A × e] s . (6.25)

The diagrams which describe the discussed effect are the same as those pre-
sented in Fig. 6.1.

We start with the contribution of diagrams 6.1, a and 6.1, b, which are
generated by the first term in Hamiltonian (6.25). Let us note here that in
the noncovariant perturbation theory, employed here, the energy of the initial
state, counted off m, is ω in both diagrams, and the intermediate state energies
are 0 and 2ω, respectively. The total contribution of these two diagrams to
the scattering amplitude is

A1 = − e2g2

4m2

{
([k2 × e∗2]s)([k1 × e1]s)

ω
+

([k1 × e1]s)([k2 × e∗2]s)
−ω

}

= − e2g2

4m2
i ω [[n2 × e∗2] × [n1 × e1]] s ; (6.26)

here and below n1,2 = k1,2/k = k1,2/ω.
The contribution to the scattering amplitude of diagram 6.1, c, which is

generated here by the second term in Hamiltonian (6.25), is
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A2 =
e2(g − 1)

m2
iω [e∗2 × e1] s . (6.27)

And at last, the third contribution to the spin-dependent amplitude arises
also from diagrams 6.1, a, and 6.1, b, in each of which now the left vertex is
generated by the first term in Hamiltonian (6.25), and the right one by the
common nonrelativistic interaction

− e

2m
(p + p′)A .

This contribution is

A3 = − e2g

4m2
iω [(n1e∗2)[n1 × e1] − (n2e1)[n2 × e∗2]] s. (6.28)

The total low-energy spin-dependent amplitude is written as follows:

A = A1 + A2 + A3 = − e2

4m2
i ω

{
(g − 2)2 [e∗2 × e1]

−g2 [[1 − (n1n2)][e∗
2 × e1] + [n1 × n2](e∗2e1)

−[n1 × e∗2](n2e1) + (n1e∗2)[n2 × e1]]

−g [[n2 × e∗2](n2e1) − (n1e∗2)[n1 × e1]]} s . (6.29)

To derive this formula, expression (6.26) was transformed by means of identity

[n2 × e∗2] × [n1 × e1] = (n1n2)[e∗
2 × e1] − [n1 × n2](e∗2e1)

+ [n1 × e∗2](n2e1) − (n1e∗2)[n2 × e1] . (6.30)

As well as the Thomson amplitude (6.24), result (6.29) was obtained un-
der the assumption that the particle interacts with the electromagnetic field
to the lowest nonvanishing order of perturbation theory, and other possible
interactions of this particle were all neglected. In the present case as well the
role of all interactions, unaccounted for (electromagnetic radiative corrections
included), reduces to the fact that the mass and the charge, e and m, in am-
plitude (6.29) are the observable physical ones. Certainly, for the g-factor one
should use its true observable value as well. As to the overall numerical factor
in expression (6.29), it does not change here by virtue of the conservation law
for the angular momentum of the scatterer in its rest frame, i.e., for the spin s.

Thus, formula (6.29) is the exact expression for the scattering amplitude
in the low-frequency limit, and e, m, and g in this formula are, respectively,
the observable physical charge, mass, and gyromagnetic ratio of the target.
This is the second low-energy theorem for the Compton scattering.

Result (6.29) simplifies essentially for the forward scattering when n1 =
n2 = n:
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An = A1 + A2 = − e2(g − 2)2

4m2
iω [e∗2 × e1] s . (6.31)

This amplitude turns to zero for g = 2.
Relations (6.29) and (6.31) were derived by F.E. Low (1954), and by

M. Gell-Mann, M.L. Goldberger (1954).
One more case when result (6.29) simplifies essentially is the scattering

without change of polarization. Here

e2 = e1 = e, (n1,2 e) = (n1,2 e∗) = 0 ,

so that the amplitude reduces to

Ae = − e2

4m2
i ω

{
(g − 2)2 [e∗ × e]

−g2 [ [1 − (n1n2)][e∗ × e] + [n1 × n2] ξ ]
}
s , (6.32)

where ξ = | e|2 ≤ 1 is the degree of polarization of the photon.
Let us confine ourselves here as well to the forward scattering. Then

−i[e∗ × e] = ξcn , (6.33)

where ξc is the degree of circular polarization, and amplitude (6.32) looks as
follows:

Aen =
e2 (g − 2)2

4m2
ω ξc(n s) . (6.34)

We recall now that the refraction index n for a medium with the density
N of scatterers is expressed via the forward scattering amplitude A as follows:

n = 1 +
2πNA

ω2
.

Therefore, a medium consisting of polarized scatterers possesses by virtue
of equation (6.34) a specific anisotropic optical activity. The corresponding
correction to the refraction index of circularly polarized photon is

∆n = ± πNe2(g − 2)2s
2m2ω

cos θ ; (6.35)

here ± refers to the sign of the circular polarization, θ is the angle between
the directions of the polarization of medium and of the propagation of photon;
all the scatterers are assumed to be completely polarized.

6.3 Particle Production by Constant Electric Field

Particle production by an external electric field is a remarkable prediction of
the relativistic quantum theory (F. Sauter, 1931; J. Schwinger, 1951). Electric
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field strengths necessary for the real observation of the effect are achieved in
the collisions of highly charged atomic nuclei when they reach short distances.

Here, we will consider the model of this phenomenon which has an exact
solution: the case of a constant homogeneous external field E . We use the
picture of the Dirac sea which simplifies the solution essentially.

Let us start with the calculation of the main, exponential dependence of
the effect. We direct the z axis along the constant force F = eE = (0, 0, eE),
then the potential energy is U = −eEz. When a particle moves in such a field,
both its total energy E = ±

√
m2c4 + p2c2 − eEz and transverse momentum

p⊥ = (px, py, 0) are conserved.
In this field the usual Dirac gap (Fig. 6.2, a) tilts (see Fig. 6.2, b). As a

result, an electron with a negative energy in the absence of the field, can now
tunnel through the gap (see the horizontal dashed line in Fig. 6.2, b) and go
to infinity as a usual particle. The hole created in this way is nothing but a
positron.

z2z1

b

m

−m

a

Fig. 6.2
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Let E = −
√

m2c4 + p2c2 − eEz be the energy of a particle in the Dirac
sea. The longitudinal momentum of the particle

pz(z) =
1
c

√
(eEz + E)2 − m2c4 − p2

⊥c2

vanishes at

z1,2 =
−E

eE ∓
√

m2c4 + p2
⊥c2

eE .

An initial particle from the Dirac sea enters the barrier at the point z = z1

and leaves it at z = z2. The underbarrier action is found easily:

S =
∫ z2

z1

| p(z) | dz =
π

2
(m2c2 + p2

⊥) c

eE .

As a result, the exponential factor in the probability W of the underbarrier
transition is

W ∼ e−2S/� = exp
[
− π(m2c2 + p2

⊥) c

eE�

]
. (6.36)

Let us note that the external field can be considered constant if it changes
weakly on the underbarrier path. The ratio l/λ of the length of this path
l = z2 − z1 ∼ mc2/(eE) to the Compton wavelength of electron λ = �/(mc)
is equal in the order of magnitude to the underbarrier action S in the units
of �, so that in the semiclassical situation l � λ.

We calculate now the preexponential factor in the probability of pair cre-
ation 2. The exponential (6.36) is the probability that a particle of the Dirac
sea approaching the potential barrier from the left (see Fig. 6.2, b) will tunnel
through it to the right, thus becoming a real electron. Let us consider the ini-
tial particles in the element of momentum space dp = d2p⊥ dpz . Their space
density is dn = 2dp/(2π�)3, where the factor 2 corresponds to two possible
orientations of the electron spin. The number of particles passing through the
elementary area dx dy on the left-hand side of the barrier is dṄ = d jz(z) dx dy,
where d jz(z) = vz(z) dn. This expression contains the quantity

vz(z) dpz =
∂E

∂pz
dpz = dE ,

where the partial derivative is taken at fixed values of z and p⊥. On the
other hand, it can be easily seen that the energy interval dE of the tunneling
particles is directly related to the interval dz of the longitudinal coordinates
of the points where particles enter the barrier: dE = eE dz (up to the sign,
which is inessential here). To obtain the total number of pairs created in the
volume dV = dx dy dz, we should multiply exponential (6.36) by dṄ . As a

2The calculation presented below was performed for the first time by
N.B. Narozhny (1979).
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result, the total number of pairs created in the unit time in the unit volume
is

P1/2 =
dW

dt dV
= 2 eE

∫
d2p⊥

(2π�)3
exp

[
− π(m2c2 + p2

⊥) c

eE�

]
.

Integrating this expression over the transverse momenta, we arrive at the final
result:

P1/2 =
e2E2

4π3�2c
exp

(
− πm2c3

eE�

)
. (6.37)

We have equipped the probability W in the above formulas with the sub-
script 1/2 to indicate that the result refers to particles of spin one-half. Ob-
viously, the notion of the Dirac sea, and hence the above derivation by itself,
do not apply to boson-pair creation. However, in the semiclassical approxi-
mation, the creation rate for particles of various spins differ by the number of
spin states only. Thus, the probability of scalar particle production calculated
in this approximation, is two times smaller:

P0 =
e2E2

8π3�2c
exp

(
− πm2c3

eE�

)
. (6.38)

The corresponding exact results for a constant electric field are:

P1/2 =
e2E2

4π3�2c

∞∑
n=1

1
n2

exp
(
−n

πm2c3

eE�

)
,

P0 =
e2E2

8π3�2c

∞∑
n=1

(−1)n−1

n2
exp

(
−n

πm2c3

eE�

)
.

Of course, the account for higher terms, with n ≥ 2, in these sums makes
sense only for very strong electric fields, for E >∼ (m2c3/e�). For smaller fields,
simple formulas (6.37) and (6.38) are valid quantitatively.

In conclusion of this subsection, let us come back to the criterion of the
semiclassical approximation, l/λ � 1. It means also that the tilt of the Dirac
gap is very small. Therefore, the vicinity of the turning point, where the clas-
sical picture is inapplicable, extends anomalously far away into the (formally)
classically accessible region. That is why the formation length for the electron
– positron pairs is in this case not (m/eE), as one may expect näıvely, but
much larger, (m/eE)(m2/eE)1/2, as was demonstrated by direct calculations
(A.I. Nikishov, 1969).

6.4 Vacuum Fluctuations of Electromagnetic Field
and Shift of Levels

6.4.1 Lamb Shift for Electron in Coulomb Field

The shift of levels due to the quantum fluctuations of the vacuum of electro-
magnetic field, the so-called Lamb shift, is considered usually in textbooks
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using the whole machinery of quantum electrodynamics, even in a relatively
simple problem of an electron in a Coulomb field.

The more intuitive approach, presented below, allows one to derive in a
rather simple way leading, logarithmic terms in the answers not only for this
problem, but for more complicated problems as well. We use here the Coulomb
gauge, ∇A = 0, where the electromagnetic field is split into the instantaneous
Coulomb field and three-dimensionally transverse photons.

We start with the application of this approach to the mentioned simple
problem — electron in the Coulomb field (T. Welton, 1948). Due to the quan-
tum fluctuations of the vacuum of electromagnetic field, the radius vector of
a charged particle fluctuates as well: r → r + ρ. After averaging over these
fluctuations, the potential energy is modified as follows:

< V (r + ρ) >= V (r)+ < ρi > ∇iV (r) +
1
2

< ρiρk > ∇i∇kV (r). (6.39)

Obviously, the fluctuations ρ are isotropic, so that

< ρi >= 0, < ρiρk >=
1
3

< ρ2 > δik .

Therefore, the perturbation of the potential by these fluctuations reduces to

δV (r) =
1
6

< ρ2 > ∆V (r) . (6.40)

For the attracting Coulomb potential V (r) = −α/r it gives

δVC(r) =
2πα

3
δ(r) < ρ2 > (6.41)

(here and below in this chapter we use mainly the units where � = 1, c = 1,
α = e2).

Let us consider now < ρ2 >. The equation of motion of an electron in
the fluctuating electric field mr̈ = eE gives for the Fourier components the
following result:

ρω = − eEω

mω2
. (6.42)

Due to the usual normalization condition, according to which the energy of
vacuum fluctuations for given frequency and polarization is

E2
ω + B2

ω

8π
=

E2
ω

4π
=

ω

2
,

we obtain
ρ2

ω =
2πα

m2ω3
. (6.43)

To obtain < ρ2 >, we have to sum this expression by polarizations of the
fluctuating field, i.e., multiply it by 2, and to integrate it over the phase
space:



82 6 Quantum Electrodynamics. Again Minimum Calculations

< ρ2 >= 2
∫

dk
(2π)3

ρ2
ω =

2α

πm2

∫
dω

ω
. (6.44)

With the logarithmic accuracy, we can take as a lower limit for this integral
the binding energy ∼ mα2: at smaller frequencies, the electron cannot be
considered free, so that its motion due to the fluctuations is suppressed here.
For the upper limit we accept m, since here the employed nonrelativistic
approximation is not valid, the electron mass effectively grows, which also
leads to the suppression of the motion due to the fluctuations. Thus, we arrive
at the following expression for the Lamb perturbation in hydrogen:

δVC(r) =
8
3

α2

m2
ln

1
α

δ(r). (6.45)

With this perturbation, we find with the logarithmic accuracy the known
result for the Lamb shift in hydrogen:

δEnl =
8
3

α2

m2
ln

1
α
|ψnl(0)|2 =

8mα5

3πn3
ln

1
α

δl0; (6.46)

here n and l are the principal and orbital quantum numbers, respectively.
In particular, 2s1/2 level in hydrogen shifts up by

δE(2s1/2) =
mα5

3π
ln

1
α

.

Thus, the well-known degeneracy of 2s1/2 and 2p1/2 levels in hydrogen is
lifted. More accurate calculations in quantum electrodynamics (N.M. Kroll,
W.E. Lamb, 1949; J.B. French, V.F. Weisskopf, 1949) give for the shift of
2s1/2 level the value

δE(2s1/2) =
mα5

3π

(
ln

1
α

− 1.089
)

= 1034 MHz ,

and for the splitting of 2s1/2 and 2p1/2 levels the value

E2s1/2 − E2p1/2 = 1057.91± 0.01 MHz ,

in complete agreement with the experimental result

1057.90± 0.06 MHz .

We note that in hydrogen-like ions the Lamb shift grows as Z4. One power
of Z originates from the nonscreened Coulomb potential of the nucleus, and
Z3 from |ψ(0) |2.
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6.4.2 Lamb Shift and Infrared Divergence

In fact, the Lamb shift in hydrogen is directly related to the infrared diver-
gence in the problem of the electron scattering on the Coulomb center 3.
We note that this scattering amplitude is described by the diagrams in Fig.
6.3. If the infrared divergence is regularized with the photon mass λ, the

a cb

Fig. 6.3

logarithmic dependence of the vertex part (Fig. 6.3, a) on λ cancels with the
analogous dependence on λ of diagrams in Figs. 6.3, b, c which describe the
Bremsstrahlung. (In the Coulomb gauge, used here and below, the dashed
line refers to the Coulomb field, and the wavy line describes the transverse
photon.)

If there is no acceleration, i.e., at the vanishing momentum transfer q, the
radiation vanishes also. It is quite natural therefore that the infrared part of
the vertex correction is also proportional to q2. Indeed, with this correction
included, the potential of the electron interaction with the Coulomb center is

V (q) = − 4πα

q2

(
1 − αq2

3πm2
ln

m

λ

)
. (6.47)

Of course, in the bound state problem there is no infrared radiation. How-
ever, here the electron is not free, it is off mass shell. Its deviation off the
mass shell coincides in the order of magnitude with its binding energy, i.e.,
is estimated as mα2. On the other hand, the role of the photon mass in the
Bremsstrahlung process is in essence to fix the minimum possible deviation
of the total invariant mass of the final two-body state electron–photon from
the mass of a free electron. Therefore, in the bound state problem one can
put with the logarithmic accuracy in formula (6.47) λ ∼ ma2. As a result, the
logarithmic term in this formula reduces to

δV (q) =
8
3

α2

m2
ln

1
α

. (6.48)

3In this and two next subsections we follow the work by I. B. Khriplovich,
A. I. Milshtein, A. S. Yelkhovsky (1994).
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Going over in this expression to the coordinate representation, we reproduce
in such a way the Lamb interaction (6.45).

6.4.3 Lamb Shift in Two-Body Problem

Let us address now the case of two particles. The interaction potential for
these particles, averaged over the vacuum fluctuations, is

< V (r1−r2+ρ1−ρ2) >= V (r1−r2)+
1
6

< (ρ1−ρ2)
2 > ∆V (r1−r2) . (6.49)

The arguments coinciding with the previous ones demonstrate that

< ρ2
i >=

2e2
i

πm2
i

∫ m

mα2

dω

ω
=

4e2
i

πm2
i

ln
1
α

, i = 1, 2 . (6.50)

The corresponding contributions to the interaction operator are described by
diagrams in Fig. 6.4; therein (and in diagrams below) the dashed line corre-
sponds to the Coulomb interaction, and the wavy line describes the emission
and absorption of the vacuum quantum.

Fig. 6.4

Let us consider now the vacuum expectation value 2 < ρ1ρ2 >. It is
distinct from zero only for fluctuations with the wavelength exceeding the
size of the atomic system 1/(mα) (here we also work with the logarithmic
accuracy). For smaller wavelengths, or for larger frequencies, ω > mα, the
fluctuations of coordinates are uncorrelated, i.e., < ρ1ρ2 >= 0. In other
words, the upper limit in the integral over frequencies of virtual quanta in the
correlation function < ρ1ρ2 > is not m, as was the case in formula (6.44), but
mα. Thus, the contribution of this average is

−2 < ρ1ρ2 >= − e1e2

πm1m2

∫ mα

mα2

dω

ω
= − e1e2

πm1m2
ln

1
α

. (6.51)

It can be easily seen that the discussed vacuum expectation value corresponds
to diagrams in Fig. 6.5.
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Fig. 6.5

So, the perturbation operator generated by diagrams in Figs. 6.4 and 6.5
is

δV e+e−
C (r) = 8

α2

m2
ln

1
α

δ(r) (6.52)

and

δV e−e−
C (r) = − 8

3
α2

m2
ln

1
α

δ(r12) , (6.53)

correspondingly, for positronium and for atomic electrons (we recall that in
the last case we deal with the Coulomb repulsion, but not attraction). At last,
the operator for the corresponding interaction between electron and nucleus
of mass M and charge Z is

δVC(r) =
8
3

α2

m2
ln

1
α

(
1 +

Zm

M

)
δ(r12) ; (6.54)

we confine ourselves here to the term of first order in small parameter Zm/M .

6.4.4 Magnetic Contribution and Thomson Scattering. Final
Results for Two-Body Problems

Certainly, in the given order in α we have considered all contributions with
the true infrared divergence which is cut off at the binding energy of the
Coulomb system, i.e., at mα2. The above arguments demonstrate, however,
that in diagrams with a double photon exchange (see Fig. 6.5) there is a con-
tribution cutting them off effectively at frequencies larger than the typical
momentum transfer q ∼ mα. It is natural therefore to consider in the same
region mα < ω < m the diagrams with double magnetic exchange. To our
accuracy one can neglect in them the three-dimensional external momenta of
both particles. It is well-known that in this case, in the totally nonrelativistic
limit, the scattering of a transverse photon is described by the contact opera-
tor (6.22). Correspondingly, the double magnetic exchange is reduced to the
simple diagrams (see Fig. 6.6) with the vertices

e2
i

mi

√
4π

2ω

√
4π

2ω′ (eλ(k) e′λ
′
(k′)) , (6.55)

generated by this operator. Here ω , ω′ are the frequencies of the emitted
quanta, k , k′ are their momenta, and eλ(k) , e′λ

′
(k′) are their polarization
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Fig. 6.6

vectors. Since the recoil of the particle – source is neglected, then in the present
case

k′ = −k , ω′ = ω , eλ(k) e′λ
′
(k′) = eλ(k) eλ′

(−k) = δλλ′ .

As a result, vertex (6.55) simplifies to

e2
i

mi

4π

2ω
δλλ′ . (6.56)

The calculation of effective interaction δVM is of no difficulty. The common
perturbation theory gives the following result in the momentum represen-
tation:

δVM = 2 · 1
2
· e2

1e
2
2

m1m2

∑
λλ′

∫
dk

(2π)3

(
4π

2ω

)2
δλλ′ δλλ′

− 2ω
. (6.57)

Here, the overall factor 2 reflects the presence of two diagrams (see Fig. 6.6);
the factor 1/2 is due to the identity of photons: to avoid double count, the
standard two-particle phase space for identical particles should be divided by
two. And at last, − 2ω in this formula is the common energy denominator
arising in the second order of perturbation theory.

We note now that with two independent polarizations of the three-
dimensionally transverse photons∑

λλ′
δλλ′ δλλ′ =

∑
λ

δλλ = 2 .

Then we recall that k = ω, and that the effective region of integration over ω
extends from mα to m. Thus, we obtain

δVM = − 2
e2
1e

2
2

m1m2

∫ m

mα

dω

ω
= − 2

e2
1e

2
2

m1m2
ln

1
α

,

or in the coordinate representation

δVM = − 2
e2
1e

2
2

m1m2
ln

1
α

δ(r12) . (6.58)
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For the electron–electron and electron–positron interactions, this expression
reduces to

− 2
α2

m2
ln

1
α

δ(r12) , (6.59)

and for the electron–nucleus interaction to

− 2
Z2α2

mM
ln

1
α

δ(r) . (6.60)

The total Lamb shift operator in positronium is

δV (r) = δVC(r) + δVM (r) = 6
α2

m2
ln

1
α

δ(r) , (6.61)

and the corresponding shift of a level with quantum numbers n, l constitutes

δEnl = 6
α2

m2
ln

1
α
|ψnl(0)|2 =

3
4

mα5

πn3
ln

1
α

δl0 . (6.62)

This result reproduces the logarithmic contribution to the exact expression
for the Lamb shift in positronium (T. Fulton, P.C. Martin, 1954). Numerical
difference between the logarithmic result (6.62) and the exact one is small
for parapositronium (the total spin S = 0): instead of lnα = 4.9, we have
in the exact result 4.7 . The difference in orthopositronium (S = 1) is larger:
ln α = 4.9 changes in the exact result to 3.0 .

In the presented calculation of the logarithmic contribution to the Lamb
shift, it becomes quite clear why this contribution is independent of S. For
the correction δVC(r), this is the spin independence of the common Coulomb
interaction. For the correction δVM (r), related to the double magnetic ex-
change, this is the spin independence of the Thomson amplitude, i.e., of the
nonrelativistic limit of the Compton scattering.

Let us come back to usual atoms. With formulas (6.53), (6.54), (6.59),
and (6.60), we obtain the total Lamb shift operator for an atom, including
the contribution of first order in 1/M :

δV =
8
3

Zα2

m2
ln

1
α

∑
i

δ(ri)

− 14
3

α2

m2
ln

1
α

∑
i<j

δ(rij) +
2
3

Z2α2

mM
ln

1
α

∑
i

δ(ri) . (6.63)

The electron–electron interaction in this expression was known for helium (H.
Araki, 1957; P.K. Kabir, E.E. Salpeter, 1957; J. Sucher, 1958), and the term
∼ 1/M was known for hydrogen (G.W. Erickson, D.R. Yennie, 1965).

Thus, all logarithmic terms in the Lamb shift have clear physical interpre-
tations.
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6.5 High-Energy Processes

6.5.1 Does Classical Limit Exist for Electron Scattering
in Coulomb Field?

The answer to this question for the nonrelativistic problem is well-known:
certainly, here this limit does exist. Moreover, the classical cross-section for
the electron scattering on the Coulomb center in the nonrelativistic case just
coincides with the quantum one 4.

The situation in the relativistic problem is more subtle. The scattering
cross-section for an electron on the Coulomb center with charge Ze is

dσ1/2 = dσ0

(
1 − v2 sin2 θ

2

)
, (6.64)

where

dσ0 =
(Zα)2

4ε2v4
sin−4 θ

2
dΩ (6.65)

is the scattering cross-section for particle of spin 0 on the same center, ε and
v are the energy and velocity of the particle, and θ is the scattering angle.

Due to the factor (
1 − v2 sin2 θ

2

)
(6.66)

in formula (6.64), the backward scattering of the electron, at θ → π, in the ul-
trarelativistic limit v → 1 is suppressed. The explanation of this suppression
is sufficiently simple. In the ultrarelativistic limit the electron helicity (i.e.,
the projection of the spin onto the momentum) is conserved in electromag-
netic interactions. Since the projection of the orbital angular momentum onto
the momentum vanishes identically, the helicity conservation means that the
projection of the total angular momentum onto the momentum is conserved.
Thus, the backward scattering of ultrarelativistic electron is forbidden by the
conservation of the total angular momentum; in the present case we mean the
conservation of its projection onto the direction of the initial motion.

However, the natural question arises. Of course, the spin of a particle is its
quantum characteristic. Then, how is it that scattering cross-sections (6.64)
and (6.65) for particles of spin 1/2 and 0, respectively, differ by suppression
factor (6.66) which does not contain the Planck constant �? The usual answer
is that both formulas, (6.64) and (6.65), have been derived in fact in the Born
approximation, under the condition Ze2/�v � 1, and therefore do not allow
the limiting transition � → 0.

Of course, this is true by itself, but in no way exhausts the problem. In-
deed, the helicity of ultrarelativistic electron is conserved beyond the Born

4Let us recall that once this coincidence proved to be extremely important for
the correct interpretation of the Rutherford experiments and for the creation of
quantum mechanics.
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approximation as well, so that its backward scattering is suppressed as com-
pared to the scalar case in the exact problem also. On the other hand, in the
classical limit � → 0, one may expect that the difference between particles
of spin 1/2 and 0 is erased. So, how does the transition to the classical limit
occur in the exact solution?

The answer to this question is rather unexpected. The problem of scatter-
ing on a Coulomb center does not allow the limiting transition � → 0 for both
spins, 1/2 and 0. It is well-known that the ground state energy of electron in
the field of a point-like nucleus with charge Z is 5

E = mc2

√
1 −

(
Ze2

�c

)2

; (6.67)

we write down explicitly in this expression not only �, but c as well. It is quite
obvious that formula (6.67) does not allow the limiting transition � → 0. But
what happens really at Ze2/�c → 1? At first, the total energy of electron
tends to zero. In the realistic problem, one should take into account the finite
size of the nucleus. Then, with the further decrease of �, or (which is the same)
with the increase of Z, this energy becomes negative. With the subsequent
increase of Z, it becomes negative to such an extent that the bare nucleus can
decay into a single-electron ion and positron (V.N. Gribov, 1974). Of course,
this reasoning applies as well to a Coulomb center with a negative charge
which will decay into electron and the bound state of positron.

Let us come back to our problem. These arguments demonstrate that with
such decrease of �, under which Ze2/�c tends to 1, the very approximation of
an external Coulomb field loses physical meaning.

6.5.2 Cross-Sections of Processes e+e− → µ+µ−

and e+e− → π+π−

The processes e+e− → µ+µ− and e+e− → π+π− are described by Feynman
diagrams presented in Fig. 6.7. Their total cross-sections are well-known, and
in the center-of-mass frame are, respectively,

σµ =
4πα2

3ε2

(
1 − m2

µ

ε2

)1/2 (
1 +

m2
µ

2ε2

)
(6.68)

and

σπ =
πα2

3ε2

(
1 − m2

π

ε2

)3/2

. (6.69)

5Let us note that for a charged scalar particle the corresponding ground state
energy is

E = mc2

√
1/2 +

√
1/4 − (Ze2/�c)2 .
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e+

e− π+

π−

e−

e+ µ−

µ+

Fig. 6.7

Here ε is the energy of initial electron, mµ and mπ are the muon and pion
masses. It does not make sense to present here the standard calculation of
these processes which can be found in numerous textbooks. However, some
curious, and sometimes unexpected, peculiarities of these reactions are of a
doubtless interest. We discuss them below, trying to confine ourselves to qual-
itative arguments.

Let us start with the current conservation law which in the momentum
representation is qµjµ = 0, where the momentum transfer qµ = p ′

µ − pµ in
the center of mass system is (2ε, 0). (Let us recall that here the 4-momentum
of an antiparticle with energy ε and momentum p should be understood as
pµ = −(ε, p).) It means in particular that the currents of both initial and
final particles, as well as the intermediate photon, have the space components
only. Hence, both pairs of particles, initial and final, are in a state with the
total angular momentum J = 1.

For the reaction e+e− → π+π−, the quantum numbers of the final state
follow from it immediately: 1P1 (we use the standard notations 2S+1LJ , where
S is the total spin of the system, L is its total orbital angular momentum,
J is its total angular momentum). It is well-known that the amplitude of a
two-particle process at the threshold, i.e., at p → 0, is proportional to pL,
and its cross-section is proportional to p2L+1 (one power of the momentum
originates from the two-particle phase space). Thus, the threshold behavior
of cross-section (6.69),

σπ ∼
(

1 − m2
π

ε2

)3/2

∼ p3 ,

is quite obvious. We note that the space parity of a system of two (pseudo)sca-
lar particles π+π−, equal to (−1)L, or −1 in our case, coincides, as it should,
with the space parity of the intermediate photon.

We go over now to the muon production. Let us determine the quantum
numbers L and S, possible here at the total angular momentum J = 1. The
space parity of the fermion – antifermion state is equal to (−1)L+1, so that
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only even L are possible here. With the condition J = 1 (and the obvious
limitation S ≤ 1), we find two possible states of the system µ+µ−: 3S1 and
3D1. Let us note that in the result the charge parity of this system which
is well-known to be equal to (−1)L+S, has coincided, as should be expected,
with the charge parity −1 of the intermediate photon. Of course, the total
cross-section at the threshold is dominated by the contribution of the 3S1

state, so that in this case as well the threshold behavior,

σµ ∼
(

1 − m2
µ

ε2

)1/2

∼ p ,

is quite natural.
Let us discuss now the asymptotic behavior of the cross-sections σµ and

σπ for ε � mµ,π. By dimensional reasons, it is quite natural that both cross-
sections decrease as 1/ε2 at ε → ∞ (we recall that the coupling constant α is
dimensionless). Perhaps, more curious is the problem of the asymptotic ratio
of cross-sections: σµ/σπ → 4 at ε → ∞.6 Below we will be engaged in the
analysis of this asymptotic.

We start with a more detailed discussion of the structure of the electro-
magnetic currents, boson and fermion ones. For π-mesons it is simple and
obvious:

Jπ
µ = (0, 2p) , (6.70)

i.e., the total charge density of the particle and antiparticle in the center
of mass system vanishes, and the total current density is directed along the
momentum of one of them.

We go over now to fermions. Here the total charge density J0 of course
vanishes as well, and the three-dimensional current density is J = u†α v ,
where

α =
(

0 σ
σ 0

)
;

and the bispinors

u† =
(
φ †√ε + mµ , φ †√ε − mµ (σn)

)
(6.71)

and

v =
(−√

ε − mµ (σn)χ√
ε + mµ χ

)
(6.72)

describe the created µ− and µ+ (or annihilating e+ and e−). In expressions
(6.71) and (6.72), φ and χ are the corresponding two-component spinors nor-
malized to unity, and n = p/p. We note that, with bispinors (6.71) and (6.72),

6The discussion of this problem looks proper since from time to time, at least in
folklore, one comes across absolutely absurd attempts to explain this ratio.
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J0 = 0, as it should be. As to the expression for the three-dimensional cur-
rent (we recall that here and below the annihilation current is discussed), it
reduces with (6.71) and (6.72) to

J = 2 φ † [ ε σ − (ε − mµ)n(σn)] χ

=
2
3

φ † { (2 ε + mµ)σ − ( ε − mµ) [ 3n(σn) − σ ]}χ . (6.73)

In the last line of this expression we have singled out the vector struc-
ture 3n(σn) − σ , which contains the irreducible second-rank space tensor
3 ninj − δij and hence describes the 3D1 amplitude. The vector left, just σ,
is independent of n and therefore refers to the 3S1 amplitude. Of course, in
the total cross-section, the amplitudes 3S1 and 3D1 do not interfere.

We note now that the vector of fermion current (6.73), as distinct from
the π-meson one (6.70) (and from näıve expectations !), in no way is directed
along n, the line of flight of the particles. Moreover, in the ultrarelativistic
limit this vector of current,

J = 2 εφ † [ σ − n(σn)] χ (6.74)

(see the first line of equation (6.73)), lies completely in the plane orthogonal
to n.

The explanation of this, rather unexpected circumstance is as follows.
For particles with magnetic moment, the electromagnetic current contains, in
line with the common, convection contribution, an additional, spin-dependent
term. For instance, in the usual nonrelativistic problem of electron scattering
on a Coulomb center, this additional current is directed along σ × q, where
σ is the vector of spin, and q is the momentum transfer. In our case, which
is the annihilation of ultrarelativistic spinning particles, this additional term
cancels completely the usual convection contribution, so that the resulting
electron current flows only in the plane orthogonal to the line of collision of
the beams, and the current of final muons flows in the plane orthogonal to
their line of flight.

The cancellation between the convection and spin contributions to the an-
nihilation fermion current can also be demonstrated as follows. Let us rewrite
the standard expression for this current in this way:

ū(p ′)γµu(p) =
1

2m
ū(p ′)

[
(p ′

µ + pµ) + iσµνqν

]
u(p) , (6.75)

where
σµν =

i

2
(γµγν − γνγµ), qν = p ′

ν − pν .

Obviously, the structure ū(p ′)(p ′
µ+pµ)u(p)/2m in this expression corresponds

to the convection current, and ū(p ′)iσµνqνu(p)/2m corresponds to the spin
one. The necessity of strong cancellation between them becomes obvious at
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least because each of these terms grows with energy more rapidly than the
initial Dirac expression ū(p ′)γµu(p).

To investigate the problem further, it is convenient to drop in each three-
dimensional current of ultrarelativistic particles the overall factor 2 ε, thus
making these currents dimensionless. In this way, choosing as the z axis for
each of the currents the unit vectors of the momenta of created π−, µ−, and
annihilating e−, respectively, we find

Jπ = 2p → n = (0, 0, 1) , (6.76)

Jµ = 2 εφ † [ σ − n(σn)] χ → φ † [ σ − n(σn)] χ = (1,± i, 0) (6.77)

(+ i and − i refer here to the created µ− of left and right helicity, respectively),

Je = 2 εφ † [ σ − n(σn)] χ → φ † [ σ − n(σn)] χ = (1,∓ i, 0) (6.78)

(−i and +i refer here to the annihilating electrons of left and right helicity,
respectively).

We start with the angular distribution of the final particles in the reaction
e+e− → π+π−. Its amplitude is proportional to (JπJe) = (nπJe). If the
angle between the momenta of π-mesons and the momenta of ultrarelativistic
colliding beams is θ, then the angle between the momenta of π-meson and
the current Je, which lies in the plane orthogonal to the momenta of the
colliding beams, is π/2 − θ. Choosing the projection of nπ onto this plane as
the x axis on it, we find immediately that (nπJe) = cos(π/2 − θ) = sin θ.
Correspondingly, the angular distribution of the pions is

dσπ ∼ sin2 θ = 1 − cos2 θ. (6.79)

Now we address the angular distribution of muons in the process e+e− →
µ+µ−. Here it is convenient to choose the line of intersection of the planes
orthogonal to ne and nµ, as the y axis, common to both planes. Then one can
easily see that

(JµJe) = cos θ ± 1 . (6.80)

Here θ is the angle between ne and nµ, and the signs + or − before 1 arise,
respectively, for same or opposite helicities of e− and µ−. We note that the
negative sign for opposite helicities in expression (6.80) is quite natural: the
conservation of projection of the total angular momentum forbids the forward
scattering (more precisely, creation) with the helicity flip. And at last, the
angular distribution of muons, after the summation over their helicities, is

dσµ ∼ (1 + cos θ)2 + (1 − cos θ)2 = 2(1 + cos2 θ). (6.81)

Now the origin of the asymptotic ratio of the total cross-sections, σµ/σπ

= 4, becomes clear. Of course, one factor 2 is caused by the larger statistical
weight for the muons, i.e., by the presence of two helicities for each of them
(see (6.81)); it should be kept in mind here that these helicities are correlated:
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one of the muons is always left, and another is right. One more factor 2 is
due to different angular distributions of pions and muons: the integral over
the total solid angle of 1 + cos2 θ is twice as large as that of sin2 θ (see (6.79)
and (6.81)).
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